PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2015 | 74 | 1 |

Tytuł artykułu

Endplate calcification and cervical intervertebral disc degeneration: the role of endplate marrow contact channel occlusion

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Background: The aim of this study was to determine the fundamental relationships between cervical intervertebral disc (IVD) degeneration, endplate calcification, and the patency of endplate marrow contact channels (MCC). Materials and methods: Sixty cervical IVDs were excised from 30 human cadavers. After sectioning the specimens underwent micro computed tomography (microCT) — from all images the number, calibre, diameter and distribution of endplate openings were measured using ImageJ. Next, the specimens were scored for macroscopic degeneration (Thompson’s classification), and subsequently underwent histological analysis for both IVD and endplate degeneration (Boos’s classification) and calcification. Results. The study group comprised 30 female and 30 male IVDs (mean age ± SD: 51.4 ± 19.5). Specimen’s age, macroscopic and microscopic degeneration correlated negatively with the number of MCCs (r = –0.33–(–0.95); p < 0.0001), apart from the MCCs > 300 µm in diameter (r = 0.66–0.79; p < 0.0001). The negative relationship was strongest for the MCCs 10–50 µm in diameter. Conclusions. There is a strong negative correlation between the number of endplate MCCs, and both macroscopic and microscopic cervical IVD and endplate degeneration. This could further support the thesis that endplate calcification, through the occlusion of MCCs, leads to a fall in nutrient transport to the IVD, and subsequently causes its degeneration. (Folia Morphol 2015; 74, 1: 84–92)

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

74

Numer

1

Opis fizyczny

p.84-92,fig.,ref.

Twórcy

  • Department of Anatomy, Jagiellonian University Medical College, Kopernika 12, 31-034 Krakow, Poland
autor
  • Department of Pathology, Jagiellonian University Medical College, Krakow, Poland
autor
  • Department of Forensic Medicine, Jagiellonian University Medical College, Krakow, Poland
  • Department of Pathology, Jagiellonian University Medical College, Krakow, Poland
autor
  • Department of Anatomy, Jagiellonian University Medical College, Krakow, Poland

Bibliografia

  • 1. Benneker LM, Heini PF, Alini M, Anderson SE, Ito K (2005) 2004 Young Investigator Award Winner: vertebral endplate marrow contact channel occlusions and intervertebral disc degeneration. Spine (Phila Pa 1976), 30: 167–173.
  • 2. Bennett HS, Luft JH, Hampton JC (1959) Morphological classification of vertebrate blood capillaries. Am J Physiol, 196: 381–390.
  • 3. Boos N, Nerlich AG, Wiest I, von der Mark K, Aebi M (1997) Immunolocalization of type X collagen in human lumbar intervertebral discs during ageing and degeneration. Histochem Cell Biol 108: 471–480.
  • 4. Boos N, Weissbach S, Rohrbach H, Weiler C, Spratt KF, Nerlich AG (2002) Classification of age-related changes in lumbar intervertebral discs. Volvo Award in basic science. Spine, 27: 2631–2644.
  • 5. Coventry MB, Ghormley RK, Kernohan JW (1945) The intervertebral disc: its microscopic anatomy and pathology: Part II. Changes in the intervertebral disc concomitant with age. J Bone Joint Surg Am, 27: 233–247.
  • 6. Edwards WT, Zheng Y, Ferrara LA, Yuan HA (2001) Structural features and thickness of the vertebral cortex in the thoracolumbar spine. Spine (Phila Pa 1976), 26: 218–225.
  • 7. Grignon B, Grignon Y, Mainard D, Braun M, Netter P, Roland J (2000) The structure of the cartilaginous end-plates in elder people. Surg Radiol Anat, 22: 13–19.
  • 8. Hangai M, Kaneoka K, Kuno S, Hinotsu S, Sakane M, Mamizuka N, Sakai S, Ochiai N (2008) Factors associated with lumbar intervertebral disc degeneration in the elderly. Spine J, 8: 732–740.
  • 9. Horner HA, Urban JP (2001) 2001 Volvo Award Winner in Basic Science Studies: Effect of nutrient supply on the viability of cells from the nucleus pulposus of the intervertebral disc. Spine (Phila Pa 1976), 26: 2543–2549.
  • 10. Huang CY, Gu WY (2008) Effects of mechanical compression on metabolism and distribution of oxygen and lactate in intervertebral disc. J Biomech, 41: 1184–1196.
  • 11. Ishihara H, Urban JP (1999) Effects of low oxygen concentrations and metabolic inhibitors on proteoglycan and protein synthesis rates in the intervertebral disc. J Orthop Res, 17: 829–835.
  • 12. Jackson AR, Huang CY, Brown MD, Gu WY (2011) 3D finite element analysis of nutrient distributions and cell viability in the intervertebral disc: effects of deformation and degeneration. J Biomech Eng, 133: 091006.
  • 13. Jackson AR, Huang CY, Gu WY (2011) Effect of endplate calcification and mechanical deformation on the distribution of glucose in intervertebral disc: a 3D finite element study. Comput Methods Biomech Biomed Engin, 14: 195–204.
  • 14. Kettler A, Wilke HJ (2006) Review of existing grading systems for cervical or lumbar disc and facet joint degeneration. Eur Spine J, 15: 705–718.
  • 15. Kobayashi S, Baba H, Takeno K, Miyazaki T, Uchida K, Kokubo Y, Nomura E, Morita C, Yoshizawa H, Meir A (2008) Fine structure of cartilage canal and vascular buds in the rabbit vertebral endplate. Laboratory investigation. J Neurosurg Spine, 9: 96–103.
  • 16. Kobayashi S, Yoshizawa H (2002) Effect of mechanical compression on the vascular permeability of the dorsal root ganglion. J Orthop Res, 20: 730–739.
  • 17. Le Maitre CL, Freemont AJ, Hoyland JA (2005) The role of interleukin-1 in the pathogenesis of human intervertebral disc degeneration. Arthritis Res Ther, 7: R732–745.
  • 18. Mizia E, Tomaszewski KA, Lis GJ, Goncerz G, Kurzydło W (2012) The use of computer-assisted image analysis in measuring the histological structure of the human median nerve. Folia Morphol, 71: 82–85.
  • 19. Moore RJ (2006) The vertebral endplate: disc degeneration, disc regeneration. Eur Spine J, 15: S333–S337.
  • 20. Nachemson A, Lewin T, Maroudas A, Freeman MA (1970) In vitro diffusion of dye through the end-plates and the annulus fibrosus of human lumbar inter-vertebral discs. Acta Orthop Scand, 41: 589–607.
  • 21. Nerlich AG, Boos N, Wiest I, Aebi M (1998) Immunolocalization of major interstitial collagen types in human lumbar intervertebral discs of various ages. Virchows Arch, 432: 67–76.
  • 22. Ogata K, Whiteside LA (1981) 1980 Volvo award winner in basic science. Nutritional pathways of the intervertebral disc. An experimental study using hydrogen washout technique. Spine, 6: 211–216.
  • 23. Oki S, Matsuda Y, Itoh T, Shibata T, Okumura H, Desaki J (1994) Scanning electron microscopic observations of the vascular structure of vertebral endplates in rabbits. J Orthop Res, 12: 447–449.
  • 24. Raj PP (2008) Intervertebral disc: anatomy-physiology-pathophysiology-treatment. Pain Pract, 8: 18–44.
  • 25. Roberts S, Urban JPG, Evans H, Eisenstein SM (1996) Transport properties of the human cartilage end-plate in relation to its composition and calcification. Spine, 21: 415–420.
  • 26. Rodriguez AG, Slichter CK, Acosta FL, Rodriguez-Soto AE, Burghardt AJ, Majumdar S, Lotz JC (2011) Human disc nucleus properties and vertebral endplate permeability. Spine (Phila Pa 1976), 36: 512–520.
  • 27. Skrzat J, Kozerska M, Wróbel A (2014) Micro-computed tomography study of the abnormal osseous extensions of sella turcica. Folia Morphol, 73: 19–23.
  • 28. Skrzat J, Leszczyński B, Kozerska M, Wróbel A (2013) Topography and morphometry of the subarcuate canal. Folia Morphol, 72: 357–361.
  • 29. Taylor JR, Twomey LT (1998) Growth of human intervertebral discs and vertebral bodies. J Anat, 120: 49–68.
  • 30. Thompson JP, Pearce RH, Schechter MT, Adams ME, Tsang IK, Bishop PB (1990) Preliminary evaluation of a scheme for grading the gross morphology of the human intervertebral disc. Spine, 15: 411–415.
  • 31. Tomaszewski KA, Adamek D, Pasternak A, Głowacki R, Tomaszewska R, Walocha JA (2014) Degeneration and calcification of the cervical endplate is connected with a decreased expression of ANK, ENPP-1, OPN and TGF-b1 in the intervertebral disc. Pol J Pathol, 65: 204–211.
  • 32. Urban JP, Smith S, Fairbank JC (2004) Nutrition of the intervertebral disc. Spine (Phila Pa 1976), 29: 2700–2709.
  • 33. Urban MR, Fairbank JC, Etherington PJ, Loh FRCA L, Winlove CP, Urban JP (2001) Electrochemical measurement of transport into scoliotic intervertebral discs in vivo using nitrous oxide as a tracer. Spine (Phila Pa 1976), 26: 984–990.
  • 34. van der Werf M, Lezuo P, Maissen O, van Donkelaar CC, Ito K (2007) Inhibition of vertebral endplate perfusion results in decreased intervertebral disc intranuclear diffusive transport. J Anat, 211: 769–774.
  • 35. Xu HG, Hu CJ, Wang H, Liu P, Yang XM, Zhang Y, Wang LT (2011) Effects of mechanical strain on ANK, ENPP1 and TGF-beta1 expression in rat endplate chondrocytes in vitro. Mol Med Rep, 4: 831–835.
  • 36. Yoshizawa H, Ohiwa T, Kubota K (1986) Morphological study on the vertebral route for the nutrition of the intervertebral disc. Neuro-Orthopedics. 1: 17–32.
  • 37. Zaka R, Williams CJ (2006) Role of the progressive ankylosis gene in cartilage mineralization. Curr Opin Rheumatol, 18: 181–186.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-e4f3d253-2454-4f30-867a-046514b77222
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.