PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 26 | 2 |

Tytuł artykułu

Numerical analysis of an impact of planned location of sewage discharge on Natura 2000 areas - the Dead Vistula region case study

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
This article presents results of an analysis of impact of a designed discharge of contaminated water into the Dead Vistula (Wisła Martwa) in the region of the Isthmus (Przesmyk) with the aim of determination of a possible effect of the pollution onto protected areas of Natura 2000 (bird habitats and sites, especially the Bird Paradise – Ptasi Raj) nature reserve. The analysis was conducted on the basis of the two-dimensional modelling of unsteady transport of non-degradable dissolved matter. To this end, a numerical model of a section of the Dead Vistula was worked out. Four scenarios of hydro-dynamical conditions (2 – for average weather conditions and 2 – for stormy weather conditions) were selected. To solving the equation of pollution migration the finite volumes method (MOS) was applied. Two localizations of contaminated water discharge outlet were considered, namely: the first from the side of Siennicki Bridge before the Isthmus and the other in the section of the Brave Vistula (Wisła Śmiała) downstream the Isthmus. The obtained results made it possible to assess positively the first localization of the designed discharge outlet. In the other case there is a fear that at unfavourable hydro-meteorological conditions a water pollution may happen over Natura 2000 protected areas

Słowa kluczowe

Wydawca

-

Rocznik

Tom

26

Numer

2

Opis fizyczny

p.76-84,fig.,ref.

Twórcy

autor
  • Faculty of Ocean Engineering and Ship Technology, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland

Bibliografia

  • 1. Anderson J. D.: Computational Fluid Dynamics. The Basics with Applications, McGraw-Hill Inc., New York (1995), pp. 1–547.
  • 2. Chapara S.C.: Surface water-quality modeling. MacGraw Hill Company, New York, (1994), pp. 1–884.
  • 3. Crank J.: The mathematics of diffusion. Clarendon Press, Oxford, (1975), pp. 1–414.
  • 4. Courant R., Friedrichs K. and Lewy H.: On the partial difference equations of mathematical physics, IBM Journal, (1967), pp. 215–234.
  • 5. Czernuszenko W.: Dispersion of pollutants in flowing surface water. Encyclopedia of Fluid Mechanics, Surface and Groundwater flow phenomena. Houston, London, Paris: Gulf Publishing Company, 10 (1990), pp. 119–168.
  • 6. Elder J.W.: The dispersion of marked fluid in turbulent shear flow. J Fluid Mech. 5, (1959), pp. 544–560.
  • 7. Harrison R.M.: Pollution: Causes, Effects and Control (5th ed .). Royal Society of Chemistry, Cambridge, (2013), pp. 1–558.
  • 8. Jasińska E.: Hydrology and hydrodynamics of the Dead Vistula and Vistula Cutting, (in Polish), Wydawnictwo Instytutu Budownictwa Wodnego Polskiej Akademii Nauk, Gdańsk, (2002), pp. 1–133.
  • 9. Kalinowska M., Rowiński P., Kubrak J., Mirosław-Świątek D.: Scenarios of the spread of a waste heat discharge in a river – Vistula River case study. Acta Geophys 60 (2012), pp. 214–231.
  • 10. Laws E.A.: Aquatic Pollution: An Introductory Text (4th ed.).Hoboken, NJ: John Wiley & Sons, (2017), pp. 1–760.
  • 11. LeVeque R.J.: Finite Volum e Me th o d fo r Hy p e rb oli c P robl e m s. Cambridge University Press, New York, (2002), 1–578.
  • 12. Potter D. E.: Computational Physics, John Wiley & Sons Ltd., Chichester (1980), pp.1–304.
  • 13. Rutherford J.C.: River Mixing. Wiley, Chichester, (1994), pp. 1–362.
  • 14. Sawicki J.M., Zima P.: The Influence of Mixed Derivatives on The Mathematical Simulation of Pollutants Transfer. 4th International Conference on Water Pollution, Slovenia, (1997), pp. 627–635.
  • 15. Szydłowski M., Szpakowski W., Zima P.: Numerical simulation of catastrophic flood: the case study of hypothetical failure of the Bielkowo hydro-power plant reservoir, Acta Geophys 61 (2013), pp. 1229–1245.
  • 16. Szymkiewicz R.: Numerical Modeling in Open Channel Hydraulics, Book Series: Water Science and Technology Library, vol. 83 (2010), pp. 1–419.
  • 17. Tan W.Y.: Shallow Water Hydrodynamics, Mathematical Theory and Numerical Solution for a Two-dimensional System of Shallow Water Equations, Elsevier Oceanography Series, vol. 55 (1992), pp. 1–434.
  • 18. Tannehill J.C., Anderson D.A. and Pletcher R.H.:Computational Fluid Mechanics and Heat Transfer (2nd ed.), Francis & Taylor, Philadelphia, (1997), pp.1–774.
  • 19. Waite T.D.: Principles of Water Quality, Elsevier Academic Press, Orlando, (1984), pp. 1–287.
  • 20. Wielgat P., Zima P.: Analysis of the impact of the planned sewage discharge from the ’North’ Power Plant on the Vistula water quality, 16th International Multidisciplinary Scientific GeoConference SGEM 2016, Vienna, Book 3 vol. 3 (2016), pp. 19–26.
  • 21. Zima P: Mathematical Modeling of the Impact Range of Sewage Discharge on the Vistula Water Quality in the Region of Włocławek. In: Kalinowska M, Mrokowska M, Rowiński P. (eds) Free Surface Flows and Transport Processes. GeoPlanet: Earth and Planetary Sciences. Springer, Cham, (2018) pp. 489–502.
  • 22. Zima P.: Modeling of the Two-Dimensional Flow Caused by Sea Conditions and Wind Stresses on the Example of Dead Vistula. Pol. Marit. Res., vol. 97 (2018), pp. 166–171.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-e1b18fa9-f57a-408f-93c5-fc03947660de
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.