PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 16 | 1 |

Tytuł artykułu

Estimating sample size for landscape-scale mark-recapture studies of North American migratory tree bats

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Concern for migratory tree-roosting bats in North America has grown because of possible population declines from wind energy development. This concern has driven interest in estimating population-level changes. Mark-recapture methodology is one possible analytical framework for assessing bat population changes, but sample size requirements to produce reliable estimates have not been estimated. To illustrate the sample sizes necessary for a mark-recapture-based monitoring program we conducted power analyses using a statistical model that allows reencounters of live and dead marked individuals. We ran 1,000 simulations for each of five broad sample size categories in a Burnham joint model, and then compared the proportion of simulations in which 95% confidence intervals overlapped between and among years for a 4-year study. Additionally, we conducted sensitivity analyses of sample size to various capture probabilities and recovery probabilities. More than 50,000 individuals per year would need to be captured and released to accurately determine 10% and 15% declines in annual survival. To detect more dramatic declines of 33% or 50% survival over four years, then sample sizes of 25,000 or 10,000 per year, respectively, would be sufficient. Sensitivity analyses reveal that increasing recovery of dead marked individuals may be more valuable than increasing capture probability of marked individuals. Because of the extraordinary effort that would be required, we advise caution should such a mark-recapture effort be initiated because of the difficulty in attaining reliable estimates. We make recommendations for what techniques show the most promise for mark-recapture studies of bats because some techniques violate the assumptions of mark-recapture methodology when used to mark bats.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

16

Numer

1

Opis fizyczny

p.231-239,fig.,ref.

Twórcy

autor
  • Colorado Natural Heritage Program, Colorado State University Fort Collins, Colorado 80523, USA
  • U.S. Geological Survey, Fort Collins Science Center, 2150 Centre Avenue, Building C, Fort Collins, Colorado 80526, USA
autor
  • Colorado Division of Parks and Wildlife, 317 West Prospect Road, Fort Collins, Colorado 80526, USA

Bibliografia

  • 1. R. A. Adams , and M. A. Hayes . 2008. Water availability and successful lactation by bats as related to climate change in arid regions of western North America. Journal of Animal Ecology, 77: 1115–1121. Google Scholar
  • 2. A. A. Allen 1921. Banding bats. Journal of Mammalogy, 2: 53–57. Google Scholar
  • 3. A. D. Anders , and M. R. Marshall . 2005. Increasing the accuracy of productivity and survival estimates in assessing landbird population status. Conservation Biology, 19: 66–74. Google Scholar
  • 4. A. N. Arnason , and K. H. Mills . 1981. Bias and loss of precision due to tag loss in Jolly-Seber estimates for mark-recapture experiments. Canadian Journal of Fisheries and Aquatic Sciences, 38: 1077–1095. Google Scholar
  • 5. E. B. Arnett 2006. A preliminary evaluation on the use of dogs to recover bat fatalities at wind energy facilities. Wildlife Society Bulletin, 34: 1440–1445. Google Scholar
  • 6. E. B. Arnett , W. K. Brown , W. P. Erickson , J. K. Fiedler , B. L. Hamilton , T. H. Henry , A. Jain , G. D. Johnson , J. Kerns , R. R. Koford , et al. 2008. Patterns of bat fatalities at wind energy facilities in North America. Journal of Wildlife Management, 72: 61–78. Google Scholar
  • 7. W. W. Baker 1965. A contribution to the knowledge of the distribution and movement of bats in north Georgia. M.Sci. Thesis, University of Georgia, Athens, 121 pp. Google Scholar
  • 8. R. J. Barker , and G. C. White . 2001. Joint analysis of live and dead encounters of marked animals. Pp. 361–367, in Wildlife, land and people: priorities for the 21st century. Proceedings of the 2nd International Wildlife Management Congress ( R. Field , R. J. Warren , H. Okarma , and P. R. Sievert , eds.). The Wildlife Society, Bethesda, Maryland, xix + 399 pp. Google Scholar
  • 9. J. R. Beer 1955. Survival and movements of banded big brown bats. Journal of Mammalogy, 36: 242–248. Google Scholar
  • 10. I-A. Bisson , K. Safi , and R. A. Holland . 2009. Evidence for repeated independent evolution of migration in the largest family of bats. PLoS ONE 4:e7504. Google Scholar
  • 11. F. J. Bonaccorso , N. Smythe , and S. R. Humphrey . 1976. Improved technique for marking bats. Journal of Mammalogy, 57: 181–182. Google Scholar
  • 12. K. P. Burnham 1993. A theory for combined analysis of ring recovery and recapture data. Pp. 199–213, in Marked individuals in bird population studies ( J.-D. Lebreton and P. North , eds.). Birkhäuser Verlag, Basel, Switzerland, 397 pp. Google Scholar
  • 13. K. P. Burnham , D. R. Anderson , G. C. White , C. Brownie , and K. H. Pollock . 1987. Design and analysis methods for fish survival experiments based on release-recapture. American Fisheries Society Monograph, 5: 1–437. Google Scholar
  • 14. T. C. Carter , M. A. Menzel , and D. A. Saugey . 2003. Population trends of solitary foliage-roosting bats. Pp. 41–47, in Monitoring trends in bat populations of the United States and territories: problems and prospects. U.S. Geological Survey, Biological Resources Discipline, Information and Technology Report, USGS/BRD/ITR-2003-0003, Fort Collins, Colorado, 274 pp. Google Scholar
  • 15. E. A. Catchpole , S. N. Freeman , B. J. T. Morgan , and M. P. Harris . 1998. Integrated recovery/recapture data analysis. Biometrics, 54: 33–46. Google Scholar
  • 16. P. B. Conn , W. L. Kendall , and M. D. Samuel . 2004. A general model for the analysis of mark-resight, mark-recapture, and band-recovery data under tag loss. Biometrics, 60: 900–909. Google Scholar
  • 17. P. M. Cryan , and A. C. Brown . 2007. Migration of bats past a remote island offers clues toward the problem of bat fatalities at wind turbines. Biological Conservation, 139: 1–11. Google Scholar
  • 18. W. H. Davis 1966. Population dynamics of the bat Pipistrellus subflavus. Journal of Mammalogy, 47: 383–396. Google Scholar
  • 19. C. Dietz , I. Dietz , T. Ivanova , and B. M. Siemers . 2006. Effects of forearm bands on horseshoe bats (Chiroptera: Rhinolophidae). Acta Chiropterologica, 8: 523–535. Google Scholar
  • 20. C. A. Dobony , A. C. Hicks , K. E. Langwig , R. I. von Linden , J. C. Okoniewski , and R. E. Rainbolt . 2011. Little brown myotis persists despite exposure to white-nose syndrome. Journal of Fish and Wildlife Management, 2: 190–195. Google Scholar
  • 21. L. E. Ellison 2008. Summary and analysis of the U.S. government bat banding program. U.S. Geological Survey Open-File Report 2008-1363, Reston, Virginia, 117 pp. Google Scholar
  • 22. L. E. Ellison 2010. A retrospective survival analysis of Town-send's big-eared bat (Corynhorinus townsendii) from Washington State. Northwestern Naturalist, 91: 172–182. Google Scholar
  • 23. L. E. Ellison , T. J. O'Shea , D. J. Neubaum , and R. A. Bowen . 2007. Factors influencing movement probabilities of big brown bats (Eptesicus fuscus) in buildings. Ecological Applications, 17: 620–627. Google Scholar
  • 24. S. A. Field , A. J. Tyre , and H. P. Possingham . 2005. Optimizing allocation of monitoring effort under economic and observational constraints. Journal of Wildlife Management 69: 473–482. Google Scholar
  • 25. T. H. Fleming 1988. The short-tailed fruit bat: a study in plant-animal interactions. University of Chicago Press, Chicago, Illinois, 380 pp. Google Scholar
  • 26. W. F. Frick , W. E. Rainey , and E. D. Pierson . 2007. Potential effects of environmental contamination on Yuma myotis demography and population growth. Ecological Applications, 17: 1213–1222. Google Scholar
  • 27. W. F. Frick , D. S. Reynolds , and T. H. Kunz . 2010a. Influence of climate and reproductive timing on demography of little brown myotis Myotis lucifugus. Journal of Animal Ecology, 79: 128–136. Google Scholar
  • 28. W. F. Frick , J. F. Pollock , A. C. Hicks , K. E. Langwing , D. S. Reynolds , G. G. Turner , C. M. Butchkowski , and T. H. Kunz . 2010b. An emerging disease causes regional population collapse of a common North American bat species. Science, 329: 679–682. Google Scholar
  • 29. J. Gaisler , V. Hanak , V. Hanzal , and V. Jarsky . 2003. Results of bat banding in the Czech and Slovak republics, 1948— 2000. Vespertilio, 7: 3–61. Google Scholar
  • 30. S. Giavi , M. Moretti , F. Bontadina , N. Zambelli , and M. Schaub . 2014. Seasonal survival probabilities suggest low migration mortality in migrating bats. PLoS ONE, 9:e85628. Google Scholar
  • 31. R. E. Green 1999. Applications of large-scale studies of demographic rates to bird conservation. Bird Study, 46: S1, S279–S288. Google Scholar
  • 32. A. J. Hall , B. J. McConnell , and R. J. Barker . 2001. Factors affecting first-year survival in grey seals and their implications for life history strategy. Journal of Animal Ecology, 70: 138–149. Google Scholar
  • 33. M. A. Hayes 2013. Bats killed in large numbers at United States wind energy facilities. BioScience, 63: 975–979. Google Scholar
  • 34. H. B. Hitchcock , R. Keen , and A. Kurta . 1984. Survival rates of Myotis leibii and Eptesicus fuscus in southeastern Ontario. Journal of Mammalogy, 65: 126–130. Google Scholar
  • 35. M. M. P. Huso 2011. An estimator of wildlife fatality from observed carcasses. Envirometrics, 22: 318–329. Google Scholar
  • 36. R. Hutterer , T. Ivanova , C. Meyer-Cords , and L. Rodrigues . 2005. Bat migrations in Europe: a review of banding data and literature. German Agency for Nature Conservation, Bonn, Germany, 180 pp. Google Scholar
  • 37. T. E. Ingersoll , B. J. Sewall , and S. K. Amelon . 2013. Improved analysis of long-term monitoring data demonstrates marked regional declines of bat population in the eastern United States. PLoS ONE, 8:e65907. Google Scholar
  • 38. M. L. Keefer , G. A. Taylor , D. F. Garletts G. A. Gauthier , T. M. Pierce , and C. C. Caudill . 2010. Prespawn mortality in adult spring Chinook salmon outplanted above barrier dams. Ecology of Freshwater Fish, 19: 361–372. Google Scholar
  • 39. R. Keen , and H. B. Hitchcock . 1980. Survival and longevity of the little brown bat (Myotis lucifugus) in southeastern Ontario. Journal of Mammalogy, 61: 1–7. Google Scholar
  • 40. G. Kerth , and B. Konig . 1996. Transponder and infrared videocamera as methods used in a field study on the social behavior of Bechstein's bats (Myotis bechsteini). Myotis, 34: 27–34. Google Scholar
  • 41. G. Kerth , and K. Reckardt . 2003. Information transfer about roosts in female Bechstein’s bats: an experimental field study. Proceedings of the Royal Society of London, 270: 511–515. Google Scholar
  • 42. T. H. Kunz 2003. Censusing bats: challenges, solutions, and sampling biases. Pp. 9–19, in Monitoring trends in bat populations of the United States and territories: problems and prospects. U.S. Geological Survey, Biological Resources Discipline, Information and Technology Report, USGS/ BRD/ITR-2003-0003, Fort Collins, Colorado, 274 pp. Google Scholar
  • 43. T. H. Kunz , E. B. Arnett , B. M. Cooper , W. P. Erickson , R. P. Larkin , T. Mabee , M. L. Morrison , M. D. Strickland , and J. M. Szewczak . 2007a. Assessing impacts of wind-energy development on nocturnally active birds and bats: a guidance document. Journal of Wildlife Management, 71: 2449–2486. Google Scholar
  • 44. T. H. Kunz , E. B. Arnett , W. P. Erickson , A. R. Hoar , G. D. Johnson , R. P. Larkin , M. D. Strickland , R. W. Thresher , and M. D. Tuttle . 2007b. Ecological impacts of wind energy development on bats: questions, research needs, and hypotheses. Frontiers in Ecology and the Environment, 5: 315–324. Google Scholar
  • 45. T. H. Kunz , M. Betke , N. I. Hristov , and M. J. Vonhof . 2009. Methods for assessing colony size, population size, and relative abundance of bats. Pp. 133–157, in Ecological and behavioral methods for the study of bats, 2nd edition ( T. H. Kunz and S. Parsons , eds.). Johns Hopkins University Press, Baltimore, Maryland, 901 pp. Google Scholar
  • 46. J-D. Lebreton , K. P. Burnham , J. Clobert , and D. R. Anderson . 1992. Modeling survival and testing biological hypotheses using marked animals: a unified approach with case studies. Ecological Monographs, 62: 67–118. Google Scholar
  • 47. A. Lollar , and B. Schmidt-French . 2002. Captive care and medical reference for the rehabilitation of insectivorous bats, 2nd edition. Bat World Sanctuary, Mineral Wells, Texas, 340 pp. Google Scholar
  • 48. T. L. McDonald , S. C. Amstrup , and B. F. J. Manly . 2003. Tag loss can bias Jolly-Seber capture-recapture estimates. Wildlife Society Bulletin 31: 814–822. Google Scholar
  • 49. S. Nakagawa , and I. C. Cuthill . 2007. Effect size, confidence interval and statistical significance: a practical guide for biologists. Biological Review, 82: 591–605. Google Scholar
  • 50.
  • D. J. Neubaum , M. A. Neubaum , L. E. Ellison , and T. J. O'Shea . 2005. Survival and condition of big brown bats (Eptesicus fuscus) after radiotagging. Journal of Mammalogy, 86: 95–98. Google Scholar
  • 51. J. D. Nichols , and B. K. Williams . 2006. Monitoring for conservation. Trends in Ecology and Evolution, 21: 668–673. Google Scholar
  • 52. C. F. J. O’Donnell 2009. Population dynamics and survivorship in bats. Pp. 158–176, in Ecological and behavioral methods for the study of bats, 2nd edition ( T. H. Kunz and S. Parsons , eds.). Johns Hopkins University Press, Baltimore, Maryland, 901 pp. Google Scholar
  • 53. T. J. O'Shea , L. E. Ellison , and T. R. Stanley . 2004. Survival estimation in bats: historical overview, critical appraisal, and suggestions for new approaches. Pp. 247–336, in Sampling rare and elusive species: concepts, designs, and techniques for estimating population parameters ( W. L. Thompson , ed.). Island Press, Washington, D.C., 429 pp. Google Scholar
  • 54. T. J. O'Shea , L. E. Ellison , and T. R. Stanley . 2011. Adult survival and population growth in Colorado big brown bats (Eptesicus fiscus). Journal of Mammalogy, 92: 433-443. Google Scholar
  • 55. E. Papadatou , R. Pradel , M. Schaub , D. Dolch , H. Geiger , C. Ibáñez , G. Kerth , A. Popa-Lisseanu , W. Schorcht , J. Teubener , et al. 2013. Comparing survival among species with imperfect detection using multilevel analysis of mark-recapture data: a case study on bats. Ecography, 35: 153–161. Google Scholar
  • 56. R. Pradel 1996. Utilization of capture-mark-recapture for the study of recruitment and population growth rate. Biometrics, 52: 703–709. Google Scholar
  • 57. E. L. Rigby , J. Aegerter , M. Brash , and J. D. Altringham . 2012. Impact of PIT tagging on recapture rates, body condition and reproductive success of wild Daubenton's bats (Myotis daubentonii). Veterinary Record, 170: 101. Google Scholar
  • 58. J. J. Rotella , and J. E. Hines . 2005. Effects of tag loss on direct estimates of population growth rate. Ecology, 86: 821–827. Google Scholar
  • 59. W. Schorcht , F. Bontadina , and M. Schaub . 2009. Variation of adult survival drives population dynamics in a migrating forest bat. Journal of Animal Ecology, 78: 1182–1190. Google Scholar
  • 60. C. J. Schwarz , and G. A. F. Seber . 1999. Estimating animal abundance: review III. Statistical Science, 14: 427–456. Google Scholar
  • 61. R. Steffens , U. Zophel , and D. Brockmann . 2004. 40 Jahre Fledermausmarkierungszentrale Dresden — methodische Hinweise und Ergebnisübersicht. Materialien zu Naturschutz und Landschaftspflege. Sächsisches Landesamt für Umwelt und Geologie, Dresden, 125 pp. Google Scholar
  • 62. W. L. Thompson , G. C. White , and C. Gowan . 1998. Monitoring vertebrate populations. Academic Press, Inc. San Diego, California, 365 pp. Google Scholar
  • 63.
  • H. Trapido , and P. E. Crowe . 1946. The wing banding method in the study of the travels of bats. Journal of Mammalogy, 27: 224–226. Google Scholar
  • 64. T. J. Weller , and D. C. Lee . 2007. Mist net effort required to inventory a forest bat species assemblage. Journal of Wildlife Management, 71: 251–257. Google Scholar
  • 65. J. O. Whitaker Jr. , and S. L. Gummer . 2000. Population structure and dynamics of big brown bats (Eptesicus fuscus) hibernating in building in Indiana. American Midland Naturalist, 143: 389–396. Google Scholar
  • 66. G. C. White , D. R. Anderson , K. P. Burnham , and D. L. Otis . 1982. Capture-recapture and removal methods for sampling closed populations. Los Animas National Laboratory, Los Animas, New Mexico, 235 pp. Google Scholar
  • 67. G. C. White , K. P. Burnham , and D. R. Anderson . 2001. Advanced features of program MARK. Pp. 369–377, in Wild life, land and people: priorities for the 21st century. Proceedings of the 2nd International Wildlife Management Congress ( R. Field , R. J. Warren , H. Okarma , and P. R. Sievert , eds). The Wildlife Society, Bethesda, Maryland, xix + 399 pp. Google Scholar
  • 68. B. K. Williams , J. D. Nichols , and M. J. Conroy . 2001. Analysis and management of animal populations: modeling, estimation, and decision making. Academic Press, San Diego, California, 817 pp. Google Scholar
  • 69. N. Zambelli , M. Moretti , M. Mattei-Roesli , and F. Bontadina . 2009. Negative consequences of forearm bands that are too small for bats. Acta Chiropterologica, 11: 216–219.

Uwagi

Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-e08b85e5-abf0-4069-96f1-1cdd4dee75df
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.