PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 20 | 1 |

Tytuł artykułu

Hematological parameters in hibernating Eptesicus nilssonii (Mammalia: Chiroptera) collected in Northern European Russia

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The Northern bat, Eptesicus nilssonii, is the most common species among northern chiropteran populations. The species is noted for its long hibernation period with low mortality rate. We investigated the morphology of E. nilssonii blood cells during hibernation, hematological parameters including hemoglobin level, red blood cell (RBC) count, total white blood cell (WBC) count, and differential WBC count. The study revealed changes of several hematological parameters in hibernating bats, with some variation during the hibernation season. Hibernating E. nilssonii were found to have a low total WBC count similar to other hibernators; no significant variation in WBC count was noted during hibernation. Differential leukocyte count showed a significant reduction in total monocytes in winter (in the middle of the hibernation period). Total lymphocyte, band neutrophil, and basophil counts increased in spring (termination of the hibernation period).

Słowa kluczowe

Wydawca

-

Rocznik

Tom

20

Numer

1

Opis fizyczny

p.273-283,fig.,ref.

Twórcy

autor
  • Institute of Biology, Karelian Research Centre, Russian Academy of Sciences, 11 Pushkinskaya Street, 185910 Petrozavodsk, Karelia, Russia
autor
  • Institute of Biology, Karelian Research Centre, Russian Academy of Sciences, 11 Pushkinskaya Street, 185910 Petrozavodsk, Karelia, Russia
autor
  • Institute of Biology, Karelian Research Centre, Russian Academy of Sciences, 11 Pushkinskaya Street, 185910 Petrozavodsk, Karelia, Russia
autor
  • Institute of Biology, Karelian Research Centre, Russian Academy of Sciences, 11 Pushkinskaya Street, 185910 Petrozavodsk, Karelia, Russia
autor
  • Institute of Biology, Karelian Research Centre, Russian Academy of Sciences, 11 Pushkinskaya Street, 185910 Petrozavodsk, Karelia, Russia
autor
  • Institute of Biology, Karelian Research Centre, Russian Academy of Sciences, 11 Pushkinskaya Street, 185910 Petrozavodsk, Karelia, Russia

Bibliografia

  • 1. Albayrak, I., H. Bağatur Ozcan, and M. Baydemir. 2016. Some hematological parameters in Myotis myotis and Myotis blythii (Mammalia: Chiroptera) in Turkey. Turkish Journal of Zoology, 40: 388–391. Google Scholar
  • 2. Alekseeva, G. V., V. M. Yunker, and O. P. FEDOROVA. 1974. Seasonal morphophysiological characteristic of white blood cells red-cheeked ground squirrel. Journal of the Siberian Branch of the Academy of Sciences of the USSR, 10: 92–97. [In Russian]. Google Scholar
  • 3. Anufriev, A. I. 2008. Wintering and winter sleep of bats in Yakutia. Vestnik of M. K. Ammosov Yakutsk State University, 5: 5–9. [In Russian with English summary]. Google Scholar
  • 4. Anufriev, A. I., and Y. V. Revin. 2006. Bioenergetics of hibernating bats (Chiroptera, Vespertilionidae) in Yakutia. Plecotus et al. , 9: 8–17. [In Russian with English summary]. Google Scholar
  • 5. Atanassov, C., H-U. Naegeli, G. Zenke, C. Schneider., L. I. Kramorova, G. E. Bronnikov, and M. H. V. Van Regenmortel. 1995. Anti-lymphoproliferative activity of brown adipose tissue of hibernating ground squirrels is mainly caused by AMP. Comparative Biochemistry and Physiology, 112: 93–100. Google Scholar
  • 6. Belkin, V. V., D. V. Panchenko, K. F. Tirronen, A. E. Yakimova, and F. V. Fedorov. 2015. Ecological status of bats (Chiroptera) in winter roosts in Eastern Fennoscandia. Russian Journal of Ecology, 46: 463–469. Google Scholar
  • 7. Boiko, N. S. 2014. Northern bat (Eptesicus nilssonii). Pp. 559–560, in Red data book of the Murmansk region (N. A. KONSTANTINOVA, A. S. KORYAKIN, O. A. MARKOVA and V. V. BIANKI, eds.). Asia-Print Publishing, Kemerovo, 584 pp. [In Russian]. Google Scholar
  • 8. Bouma, H. R., A. M. Strijkstra, A. S. Boerema, L. E. Deelman, A. H. Epema, R. A. Hut, F. G. Kroese, and R. H. Henning. 2010a. Blood cell dynamics during hibernation in the European ground squirrel. Veterinary Immunology and Immunopathology, 136: 319–323. Google Scholar
  • 9. Bouma, H. R., H. V. Carey, and F. G. M. Kroese. 2010b. Hibernation: the immune system at rest? Journal of Leukocyte Biology, 8: 619–624. Google Scholar
  • 10. Brock, M. A. 1960. Production and life span of erythrocytes during hibernation in the golden hamster. American Journal of Physiology, 198: 1181–1186. Google Scholar
  • 11. Burbank, R. C., and J. Z. Young. 1934. Temperature changes and winter sleep of bats. Journal of Physiology, 82: 459–467. Google Scholar
  • 12. Battersby, J. (comp.) 2014. Guidelines for surveillance and monitoring of European bats. 2nd updated version. EUROBATS Publication Series, 5: 1–95. Google Scholar
  • 13. Carey, H. V., M. T. Andrews, and S. L. Martin. 2003. Mammalian hibernation: cellular and molecular responses to depressed metabolism and low temperature. Physiological Reviews, 83: 1153–1181. Google Scholar
  • 14. Chistyakov, D. V. 2009. New data on bat winter roosts in artificial underground structures of Leningrad oblast. Plecotus et al., 11–12: 14–17. [In Russian with English summary]. Google Scholar
  • 15. Czenze, Z. C., and C. K. R. Willis. 2015. Warming up and shipping out: arousal and emergence timing in hibernating little brown bats (Myotis lucifugus). Journal of Comparative Physiology, 185B: 575–586. Google Scholar
  • 16. Daan, S. 1973. Activity during natural hibernation in three species of vespertilionid bats. Netherlands Journal of Zoology, 23: 1–71. Google Scholar
  • 17. Davis, W. H., M. J. Cawein, M. D. Hassell, and E. J. Lappat. 1967. Winter and summer circulatory changes in refrigerated and active bats, Myotis lucifugus Journal of Mammalogy, 48: 132–134. Google Scholar
  • 18. Dorgelo, J., and A. Punt. 1969. Abundance and ‘internal migration’ of hibernating bats in an artificial limestone cave (‘Sibbergroeve’). Lynx, 10: 101–125. Google Scholar
  • 19. Dunbar, M. B., and T. E. Tomasi. 2006. Arousal patterns, metabolic rate, and an energy budget of Eastern red bats (Lasiurus borealis) in winter. Journal of Mammalogy, 87: 1096–1102. Google Scholar
  • 20. Frank, C. L., A. MICHALSKI, A. A. MCDONOUGH, M. RAHIMIAN , R. J. RUDD , and C. HERZOG. 2014. The resistance of a North American bat species (Eptesicus fuscus) to white-nose syndrome (WNS). PLoS ONE, 9: e113958. Google Scholar
  • 21. French, A. R. 1985. Allometries of the duration of torpid and euthermic intervals during mammalian hibernation: a test of the theory of metabolic control of the timing of changes in body temperature. Journal of Comparative Physiology, 156B: 13–19. Google Scholar
  • 22. Frerichs, K. U., C. Kennedy, L. Sokoloff, and J. M. Hallenbeck. 1994. Local cerebral blood flow during hibernation, a model of natural tolerance to ‘cerebral ischemia’. Journal of Cerebral Blood Flow and Metabolism, 14: 193–205. Google Scholar
  • 23. Geiser, F. 2004. Metabolic rate and body temperature reduction during hibernation and daily torpor. Annual Review of Physiology, 66: 239–274. Google Scholar
  • 24. Havenstein, N., F. Langer, V. Stefanski, and J. Fietz. 2016. It takes two to tango: Phagocyte and lymphocyte numbers in a small mammalian hibernator. Brain, Behavior, and Immunity, 52: 71–80. Google Scholar
  • 25. Hock, R. J. 1951. The metabolic rates and body temperature of bats. Biological Bulletin, 101: 289–299. Google Scholar
  • 26. Humphries, M. M., D. W. Thomas, and J. R. Speakman. 2002. Climate-mediated energetic constraints on the distribution of hibernating mammals. Nature, 418: 313–316. Google Scholar
  • 27. Ilyukha, V., E. Antonova, V. Belkin, L. Uzenbaeva, E. Khizhkin, S. Sergina, T. Ilyina, I. Baishnikova, A. Kizhina, and A. Yakimova. 2015. The eco-physiological status of hibernating bats (Chiroptera) in the north of the European distribution range. Acta Biologica Universitatis Daugav piliensis, 15: 75–94. Google Scholar
  • 28. Ivanyan, A. K. 1966. Seasonal rhythm of hemopoesis in bats. Journal of Evolutionary Biochemistry and Physiology, 4: 339–346. [In Russian with English summary]. Google Scholar
  • 29. Kokurewicz, T. 2004. Sex and age related habitat selection and mass dynamics of Daubenton's bats Myotis daubentonii (Kuhl, 1817) hibernating in natural conditions. Acta Chiropterologica, 6: 121–144. Google Scholar
  • 30. Kolaeva, S. G., E. G. Novoselova, Z. G. Amerkhanov, A. V. Kulikov, and V. G. Ivkov. 2003. The annual thymus involution in hibernating animals: future trends in studies of gerontology and stem cell proliferation. Cytology, 45: 628–633. [In Russian with English summary]. Google Scholar
  • 31. Kovalchuk, L., V. Mishchenko, L. Chernaya, V. Snitko, and N. Mikshevich. 2017. Haematological parameters of pond bats (Myotis dasycneme Boie, 1825 Chiroptera: Vespertilionidae) in the Ural Mountains. Zoology and Ecology, 27: 168–175. Google Scholar
  • 32. Kulzer, E. 1965. Temperaturregulation bei Fledermäusen aus ver schiedenen Klimazonen. Zeitschrift für vergleichende Physiologie, 50: 1–34. [In German]. Google Scholar
  • 33. Lebl, K., C. Bieber, P. Adamik, J. Fietz, P. Morris, A. Pilastro, and T. Ruf. 2011. Survival rates in a small hibernator, the edible dormouse: a comparison across Europe. Ecography, 34: 683–692. Google Scholar
  • 34. Lechler, E., and G. D. Penick. 1963. Blood clotting defect in hibernating ground squirrels (Citellus tridecemlineatus). American Journal of Physiology, 205: 985–988. Google Scholar
  • 35. Lesiński, G. 1986. Ecology of bats hibernating underground in Central Poland. Acta Theriologica, 31: 507–521. Google Scholar
  • 36. Lilley, T. M., J. Stauffer, M. Kanerva, and T. Eeva. 2014. Interspecific variation in redox status regulation and immune defence in five bat species: the role of ectoparasites. Oecologia, 175: 811–823. Google Scholar
  • 37. Lyman, C., and P. Chatfield. 1955. Physiology of hibernation in mammals. Physiological Review, 35: 403–425. Google Scholar
  • 38. Meyer, D. J., and J. W. Harvey. 2004. Veterinary laboratory medicine interpretation and diagnosis, 3rd edition. WB Saund ers Company, Philadelphia, 368 pp. Google Scholar
  • 39. Neuweiler, G. 2000. The biology of bats. Oxford University Press, New York, 320 pp. Google Scholar
  • 40. Nuritdinov, E. N. 1990. Analysis of the peripheral blood pattern in a ground squirrel and white rat in different seasons of the year. Journal of Evolutional Biochemistry and Physiology, 26: 328–333. [In Russian]. Google Scholar
  • 41. Paksuz, S., E. P. Paksuz, and B. Ozkan. 2009. White blood cells (WBC) count of different bat (Chiroptera) species. Trakya University Journal of Sciences, 10: 55–59. Google Scholar
  • 42. Ratnasooriya, W. D., P. V. Udagama-Randeniya, W. B. Yapa, P. M. C. B. Digana, and M. G. Dharmasiri. 2005. Haematological parameters of three of wild caught microchiropteran bats, Miniopterus schreibersii, Taphozous melanopogon and Hipposideros lankadiva in Sri Lanka. Journal of Science of University of Kelaniya, 2: 27–40. Google Scholar
  • 43. Reddick, R. L., B. L. Poole, and G. D. Penick. 1973. Thrombocytopenia of hibernation. Mechanism of induction and recovery. Laboratory Investigation, 28: 270–278. Google Scholar
  • 44. Reznik, G., H. Reznik-Schüller, A. Emminger, and U. Mohr. 1975. Comparative studies of blood from hibernating and nonhibernating European hamsters (Cricetus сricetus). Laboratory Animal Science, 25: 210–215. Google Scholar
  • 45. RYDELL, J. 1993. Eptesicus nilssonii. Mammalian Species, 430: 1–7. Google Scholar
  • 46. Rydell, J., K. B. Strann, and J. R. Speakman. 1994. First record of breeding bats above the Arctic Circle: Northern bats at 68–70°N in Norway. Journal of Zoology (London), 233: 335–339. Google Scholar
  • 47. Schinnerl, M., D. Aydinonat, F. Schwarzenberger, and C. C. Voigt. 2011. Hematological survey of common Neotropical bat species from Costa Rica. Journal of Zoo and Wildlife Medicine, 42: 382–391. Google Scholar
  • 48. Schneeberger, K., G. Á. Czirják, and C. C. Voigt. 2013. Measures of the constitutive immune system are linked to diet and roosting habits of neotropical bats. PLoS ONE, 9: e54023. Google Scholar
  • 49. Schober, W., and E. Grimmberger. 1997. The bats of Europe and North America. T. F. H. Publications, Inc., New Jersey, 239 pp. Google Scholar
  • 50. Shah, V. B., B. S. Shah, and G. V. Puranik. 2011. Evaluation of non cyanide methods for hemoglobin estimation. Indian Journal of Pathological Microbiology, 54:764–768. Google Scholar
  • 51. Siivonen, Y., and T. Wermundsen. 2008. Characteristics of winter roosts of bat species in southern Finland. Mammalia, 72: 50–56. Google Scholar
  • 52. Speakman, J. R., and P. A. Racey. 1989. Hibernal ecology of the pipistrelle bat: energy expenditure, water requirements and mass loss, implications for survival and the function of winter emergence flights. Journal of Animal Ecology, 58: 797–813. Google Scholar
  • 53. Speakman, J. R., P. I. Webb, and P. A. Racey. 1991. Effects of disturbance on the energy expenditure of hibernating bats. Journal of Applied Ecology, 28: 1087–1104. Google Scholar
  • 54. Speakman, J. R., J. Rydell, P. I. Webb, J. P. Hayes, G. C. Hays, I. A. R. Hulbert, and R. M. McDevitt. 2000. Activity patterns of insectivorous bats and birds in northern Scandinavia (69°N), during continuous midsummer daylight. Oikos, 88: 75–86. Google Scholar
  • 55. Spurrier, W. A., and A. R. Dawe. 1973. Several blood and circulatory changes in the hibernation of the 13-lined ground squirrel, Citellus tridecemlineatus. Comparative Biochemical and Physiology, 44A: 267–282. Google Scholar
  • 56. Suomalainen, P., and V. Rosokivi. 1973. Studies on the physiology of the hibernating hedgehog. The blood cell count of the hedgehog at different times of the year and in different phases of the hibernating cycle. Annales Academiae Scientiarum Fennicae: Biologica, 198: 1–8. Google Scholar
  • 57. Szilagyi, J. E., and J. B. Senturia. 1974. Erythrocyte changes in the hibernating woodchuck (Marmota monax). Cryobiology, 11: 478–481. Google Scholar
  • 58. Thomas, D. W., and F. Geiser. 1997. Periodic arousals in hibernating mammals: is evaporative water loss involved? Functional Ecology, 11: 585–591. Google Scholar
  • 59. Thorp, C. R., P. K. Ram, and G. L. Florant. 1994. Diet alters metabolic rate in the yellow-bellied marmot (Marmota flaviventris) during hibernation. Physiological Zoology, 67: 1213–1229. Google Scholar
  • 60. Urbańczyk, Z. 1991. Hibernation of Myotis daubentonii and Barbastella barbastellus in Nietoperek Bat Reserve. Myotis, 29: 115–120. Google Scholar
  • 61. Uzenbaeva, L. B., V. V. Belkin, V. A. Ilyukha, A. G. Kizhina, and A. E. Yakimova. 2015. Profiles and morphology of peripheral blood cells in three bat species of Karelia during hibernation. Journal of Evolutionary Biochemistry and Physiology, 51: 342–348. Google Scholar
  • 62. Valdivieso, D., and J. R. Tamsitt. 1971. Hematological data from tropical American bats. Canadian Jornal of Zoology, 49: 31–36. Google Scholar
  • 63. Wermundsen, T., and Y. Siivonen. 2010. A comparison of the hibernation patterns of seven bat species in Estonia. Lutra, 53: 51–62. Google Scholar
  • 64. Willis, C. K. R. 2017. Trade-offs influencing the physiological ecology of hibernation in temperate-zone bats. Integrative and Comparative Biology, 57: 1214–1224. Google Scholar
  • 65. Wołk, E., and W. Bogdanowicz. 1987. Hematology of the hibernating bat: Myotis daubentoni. Comparative Biochemistry and Physiology, 88A: 637–639. Google Scholar

Typ dokumentu

Bibliografia

Identyfikator YADDA

bwmeta1.element.agro-e05030db-0217-4ccd-b2e4-ebe086f67e54
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.