PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 36 | 02 |

Tytuł artykułu

Ultrastructure and functional activity of chloroplasts in wheat leaves under root chilling

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The effects of root chilling (2°C; during 1, 5 h, 1, 2, 4 and 7 days) on the ultrastructure, functional activity of chloroplasts and cold tolerance of leaf cells of wheat (Triticum aestivum L.) were studied. Results indicated that the area of the chloroplasts increased and the number of grana in the chloroplast decreased already within first hours of the experiment. On the 2nd–7th day of the cold treatment, the length of photosynthetic membranes in the chloroplasts increased owing to the membranes of thylakoids in grana. The number of chloroplasts per cell was increased by the end of the experiment. Reduction of electron transport rate and intensification of non-photochemical quenching of chlorophyll fluorescence were observed in the first hours of root chilling. The growth of the leaves slowed in the first day of the treatment and resumed on the second day. Leaf area in the root-chilled plants by the end of the experiment exceeded the initial values by 60 %. The significant rise in cold tolerance of leaf cells was detected after 24 h of root chilling. After 48 h of the treatment, the cold tolerance reached a maximum, and did not change thereafter. It is assumed that most of the observed structural and functional changes are adaptive, and meant to support the photosynthetic function and promote the cold tolerance of the plants.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

36

Numer

02

Opis fizyczny

p.323-330,fig.,ref.

Twórcy

autor
  • Karelian Research Centre, Institute of Biology, Russian Academy of Sciences, 11 Pushkinskaya St., 185910 Petrozavodsk, Russia
autor
  • Karelian Research Centre, Institute of Biology, Russian Academy of Sciences, 11 Pushkinskaya St., 185910 Petrozavodsk, Russia
  • Karelian Research Centre, Institute of Biology, Russian Academy of Sciences, 11 Pushkinskaya St., 185910 Petrozavodsk, Russia
  • Komarov Botanical Institute, Russian Academy of Sciences, 2 Popov Av., 197376 St. Petersburg, Russia

Bibliografia

  • Aldridge C, Maple J, Møller SG (2005) The molecular biology of plastid division in higher plants. J Exp Bot 56:1061–1077.
  • Al-Hamdani SH, Thomas TS (2000) Influence of root chilling on winter and spring wheat growth and carbon dioxide assimilation. Acta Agric Scand 50:149–154.
  • Aroca R, Tognoni F, Irigoyen JJ, Sanches-Dias M, Pardossi A (2001) Different root low temperature response of two maize genotypes differing in chilling sensitivity. Plant Physiol Biochem 39:1067–1073.
  • Artuso A, Guidi L, Soldatini GF, Pardossi A, Tognoni F (2000) The influence of chilling on photosynthesis and activities of some enzymes of sucrose metabolism in Lycopersicon esculentum Mill. Acta Physiol Plant 22:95–101.
  • Balagurova NI, Akimova TV, Titov AF (2001) The effect of local cooling of cucumber and wheat seedlings on various kinds of stress resistance of their leaves and roots. Russ J Plant Physiol 48:95–99.
  • Bigot J, Boucaud J (2006) Short-term responses of Brassica rapa plants to low temperature: effects of nitrate uptake and its translocation to the shoot. Physiol Plant 96:646–654.
  • Bloom AJ, Zvieniecki MA, Passioura JB, Randal LB, Holbrook NM, Clair D (2004) Water relations under root chilling in a sensitive and tolerant tomato species. Plant Cell Environ 27:971–980.
  • Buchner O, Holzinger A, Lütz C (2007) Effects of temperature and light on the formation of chloroplasts protrusions in leaf mesophyll cells of high alpine plants. Plant Cell Environ 30:1347–1356.
  • Chazen O, Neumann PM (1994) Hydraulic signals from the roots and rapid cell-wall hardening in growing maize (Zea mays L.) leaves are primary response to polyethylene glycol-induced water deficit. Plant Physiol 104:1385–1392.
  • Cui H, Ma W, Hu J, Li Y, Zheng Y (2012) Chilling tolerance evaluation and physiological and ultrastructural changes under chilling stress in tobacco. Afr J Agric Res 7:3349–3359.
  • Demmig-Adams B, Adams WW (2006) Photoprotection in an ecological context: the remarkable complexity of thermal energy dissipation. New Phytol 172:11–21.
  • Ensminger I, Busch F, Huner N (2006) Photostasis and cold acclimation: sensing low temperature through photosynthesis. Physiol Plant 126:28–44.
  • From J, Bauer T (1994) Action potentials in maize sieve tubes change phloem translocation. J Exp Bot 45:463–469.
  • Fromm J, Lauther S (2007) Electrical signals and their physiological significance in plants. Plant Cell Environ 30:249–257.
  • Garbero M, Andrade A, Reinoso H, Fernández B, Cuesta C, Granda V, Escudero C, Abdala G, Pedranzani H (2012) Differential effect of short-term cold stress on growth, anatomy, and hormone levels in cold-sensitive versus resistance cultivars of Digiteria eriantha. Acta Physiol Plant. doi:10.1007/s11738-012-1007-x.
  • Herde O, Pena-Cortes H, Fuss H, Willmitzer L, Fisahn J (1999) Effects of mechanical wounding, current application and heat treatment on chlorophyll fluorescence and pigment composition in tomato plants. Physiol Plant 105:144–179.
  • Hola D, Kutik J, Kocova M, Rothova O (2008) Low-temperature induced changes in the ultrastructure of maize mesophyll chloroplasts strongly depend on the chilling pattern/intensity and considerably differ among inbred and hybrid genotypes. Photosynthetica 46:329–338.
  • Hurry VM, Strand A, Tobiason M, Gardestöm P, Öquist G (1995) Cold hardening of spring and winter wheat and rape results in differential effects on growth, carbon metabolism, and carbohydrate content. Plant Physiol 109:697–706.
  • Jeschke W, Hartung W (2000) Root-shoot interactions in mineral nutrition. Plant Soil 226:57–69.
  • Jeschke WD, Holodbrata M, Hartung W (1997) Growth of Zea mays L. plants with their seminal roots only. Effects of plant development, xylem transport, mineral nutrition and the flow and distribution of abscisic acid (ABA) as a possible shoot to root signal. J Exp Bot 48:1229–1239.
  • Kratsch HA, Wise RR (2000) The ultrastructure of chilling stress. Plant Cell Environ 23:337–350.
  • Kutik J, Hola D, Kocova M, Rothova O, Haise D, Wilhelmova N, Ticha I (2004) Ultrastructure and dimensions of chloroplasts in leaves of three maize (Zea mays L.) inbred lines and their F1 hybrids grown under moderate chilling stress. Photosynthetica 42:447–455.
  • Lee SH, Singh AD, Chung GC, Ahn SJ, Noh EK, Stendie E (2004) Exposure of roots of cucumber (Cucumus sativus) to low temperature severely reduced root pressure, hydraulic conductivity and active transport of nutrients. Physiol Plant 120:413–422.
  • Lichtenthaler HK, Wellburn AL (1983) Determination of total carotenoids and chlorophylls a and b of leaf exacts in different solvents. Biochem Soc Trans 11:591–593.
  • Lichtenthaler HK, Buschmann C, Knapp M (2005) How to correctly determine the different chlorophyll fluorescence parameters and the chlorophyll fluorescence decrease ratio Rfd of leaves with the PAM fluorimeter. Photosynthetica 43:379–393.
  • Luo HY, Lee SK, He J (2009) Integrated effects of root-zone temperatures and phosphorus levels on aeroponically-grown lettuce (Lactuca sativa L.) in the tropics. Open Hortic J 2:6–12.
  • Lütz C, Engel L (2007) Changes of chloroplasts ultrastructure in some light-alpine plants: adaptation to metabolic demands and climate. Protoplasma 231:183–192.
  • Ma SF, Lin CY, Chen YM (1990) Comparative studies of chilling stress on alterations of chloroplast ultrastructure and protein synthesis in the leaves of chilling-sensitive (mungbean) and–insensitive (pea) seedlings. Bot Bull Acad Sin 31:263–272.
  • Macduff JH, Hopper MJ, Wild A (1987) The effect of root temperature of growth and uptake of ammonium and nitrate by Brassica napus L. cv. Bien venu in flowing solution culture. II. Uptake from solution containing NH₄NO₃. J Exp Bot 38:53–66.
  • Malone M (1993) Rapid inhibition of leaf growth by root chilling in wheat: kinetics and mechanisms. J Exp Bot 44:505–510.
  • Maxwell K, Johnson G (2000) Chlorophyll fluorescence–a practical guide. J Exp Bot 51:659–668.
  • McCully ME (1999) Root xylem embolism and refilling. Relation to water potentials of soil, roots, and leaves, and osmotic potentials of root xylem sap. Plant Physiol 119:1001–1008.
  • Mishra NS, Mallick BN, Sopory SK (2001) Electrical signal from root to shoot in Sorghum bicolor: induction of leaf opening and evidence for fast extracellular propagation. Plant Sci 160:237–245.
  • Miyasaka SC, Grunes DL (1997) Root zone temperature and calcium effects on phosphorus, sulfur, and micronutrients in winter wheat forage. Agron J 89:743–748.
  • Musser RL, Thomas SA, Kramer PJ (1983) Short and long effects of root and shoot chilling of Ransome. Soybean Plant Physiol 73:778–783.
  • Rapacz M, Gasior D, Zweirzykowski Z, Lesniewska-Bolianovska A, Humphreys MW, Gay AP (2004) Changes in cold tolerance and the mechanisms of acclimation of photosystem II to cold hardening generated by anther culture of Festuca pratensis × Lolium multifolium cultivars. New Phytol 162:105–114.
  • Sicher RC, Timlin D, Bailey B (2012) Responses of growth and primary metabolism of water-stressed barley roots to rehydration. J Plant Physiol 169:686–695.
  • Siddiqi MY, Memon AR, Glass ADM (1984) Regulation of K⁺ influx in barley: effects of low temperature. Plant Physiol 74:730–734.
  • Smith PG, Dale JE (1988) The effects of root cooling and excision treatments on the growth of primary leaves of Phaseolus vulgaris L. Rapid and reversible increases in abscisic acid content. New Phytol 110:293–300.
  • Talanova VV, Titov AF, Topchieva LV, Malysheva IE, Venzhik YV, Nazarkina EA (2010) Gene expression in wheat leaves under local exposure of roots to a low temperature. Doklady Biol Sci 435:438–440.
  • Ternesi M, Andrade AP, Jorrin J, Benlloch M (1994) Root-shoot signaling in sunflower plants with confined root system. Plant Soil 166:31–36.
  • Titov AF, Talanova VV, Akimova TV (2003) The effect of root treatment with various stress agents of plant cold- and heat-tolerance. Russ J Plant Physiol 50:94–99.
  • Vella GF, Joss TV, Roberts TH (2012) Chilling-induced ultrastructural changes to mesophyll cells of Arabidopsis grown under short days are almost completely reversible by plant re-warming. Protoplasma 249:1137–1149.
  • Venzhik YV, Titov AF, Talanova VV, Frolova SA, Talanov AV, Nazarkina EA (2011) Influence of lowered temperature on the resistance and functional activity of the photosynthetic apparatus of wheat plants. Biol Bull 38:132–137.
  • Venzhik YV, Titov A, Talanova VV, Miroslavov EA, Koteeva NK (2013) Structural and functional reorganization of the photosynthetic apparatus in adaptation to cold of wheat plants. Cell Tissue Biol 7:168–176.
  • Veselova S, Farhutdinov R, Mitrichenko A, Symonyan M, Hartung W (2003) The effect of root cooling on hormone content and root hydraulic conductivity of durum wheat seedlings (Triticum durum L.). Bulg J Plant Physiol, special Issue: 360–366.
  • Veselova S, Farhutdinov R, Veselov DS, Kudoyarova GR (2006) Role of cytokinins in the regulation of stomatal conductance of wheat seedlings under conditions of rapidly changing local temperature. Russ J Plant Physiol 53:857–862.
  • Wang G, Guo Z (2005) Effect of chilling stress on photosynthetic rate and chlorophyll fluorescence parameter in seedlings of two rice cultivars differing in cold tolerance. Rice Sci 12:187–191.
  • Wildon DC, Thain JF, Minchin PEH, Gubb IR, Reilly AJ, Skipper YD, Doherty HM, O'Donnel PJ, Bowles DJ (1992) Electrical signaling and systemic proteinase inhibition in the wounded plant. Nature 360:62–65.
  • Yamasaki T, Yamakawa T, Yamane Yo, Koike H, Satoh K, Katoh S (2002) Temperature acclimation of photosynthesis and related changes in photosystem II electron transport in winter wheat. Plant Physiol 128:1087–1097.
  • Ye Z, Bell RW, Dell B, Huang L (2000) Response of sunflower to boron supply at low root zone temperature. Comm Soil Plant Anal 31:2379–2392.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-df2f78cf-33eb-41b8-9251-a1aff1394d68
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.