EN
Followed a heat acclimation pretreatment, seedlings of Freesia hybrida ‘Shangnong Jinghuanghou’ were exposed to heat stress at 38°C for 6 h treatment and then recovered at 22°C for 72 h to study the impact of heat acclimation (30°C) on thermotolerance under heat stress. The results showed that the pretreated seedlings performed better under heat stress than control. Heat acclimation could slow down the decrease of chlorophyll contents under heat stress and recover better. Higher levels of soluble sugar and proline and slight lower level of soluble protein were observed in pretreated seedlings. After recovery, similar levels of proline and soluble protein were maintained in all seedlings. However, a higher level of soluble sugar was maintained in pretreated seedlings. MDA content and EL showed a stable level in pretreated seedlings while a significant increase in control, followed by a significant decrease after recovery. Significant different responses of SOD, POD, CAT, and APX activities were observed in pretreated seedlings and control. Heat acclimation led to higher activities of these enzymes and a significant response of antioxidant enzyme activities occurred in a time-dependent manner under heat stress. Exposure to high temperature caused a significant increase in SOD and APX activity, and much higher levels in SOD and APX activity were observed in pretreated seedlings compared to control during heat stress. A slight difference in change pattern of POD and CAT activity was presented. The highest activities of POD and CAT were observed at 4 and 6 h of heat stress in pretreated seedlings and control, respectively. After 72 h recovery, the activities of all tested enzymes decreased to similar levels in all seedlings.