PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 31 | 3 |

Tytuł artykułu

Effects of pH on NaCl tolerance of American elm (Ulmus americana) seedlings inoculated with Hebeloma crustuliniforme and Laccaria biocolor

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In the present study, we investigated the effects of pH treatments on NaCl tolerance in mycorrhizal and non-mycorrhizal American elm. American elm (Ulmus americana) seedlings were inoculated with Hebeloma crustuliniforme, Laccaria bicolor or with both mycorrhizal fungi and subsequently subjected to different pH solutions (pH 3, 6 and 9) containing 0 mM(control) and 60 mMNaCl for 4 weeks. Inoculation with the mycorrhizal fungi did not have a large effect on seedling dry weights when the pH and NaCl treatments were considered independently. However, when the inoculated seedlings were treated with 60 mM NaCl at pH 3 or 6, shoot to root ratios and root hydraulic conductivity were higher compared with non-inoculated plants, likely reflecting changes in seedling water flow properties. At pH 6, transpiration rates were about twofold lower in non-inoculated plants treated with NaCl compared with non-treated controls. For NaCl-treated H. crustuliniforme-and L. bicolor-inoculated plants, the greatest reduction of transpiration rates was at pH 9. Treatment with 60 mM NaCl reduced leaf chlorophyll concentrations more in non-inoculated compared with inoculated plants, with the greatest, twofold, decrease occurring at pH 6. At pH 3, root Na concentrations were higher in inoculated than noninoculated seedlings; however, there was no effect of inoculation on root Na concentrations at pH 6 and 9. Contrary to the roots, the leaves of inoculated plants had lower Na concentrations at pH 6 and 9, but not at pH 3. The results point to an interaction between ECM fungi and root zone pH for salt tolerance of American elm.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

31

Numer

3

Opis fizyczny

p.515-522,fig.,ref.

Twórcy

  • Department of Renewable Resources, University of Alberta, 442 Earth Sciences Bldg., Edmonton AB T6G 2E3, Canada
autor
  • Biology program, Biology and Physical Geography Unit, UBC Okanagan, 3333 University Way, Kelowna, BC V1V 1V7, Canada
  • Department of Renewable Resources, University of Alberta, 442 Earth Sciences Bldg., Edmonton AB T6G 2E3, Canada

Bibliografia

  • Alaoui-Sosse BL, Sehmer P, Barnola P, Dizengremel P (1998) Effect of NaCl salinity on growth and mineral partitioning in Quercus robur L., a rhythmically growing species. Trees (Berl) 12:424–430
  • Apostol KG, Zwiazek JJ, MacKinnon MD (2004) Naphthenic acids affect water conductance but do not alter shoot Na⁺ and Cl⁻ concentrations in jack pine (Pinus banksiana) seedlings. Plant Soil 263:183–190. doi:10.1023/B:PLSO.0000047725.04930.bc
  • Bois G, Piché Y, Fung MYP, Khasa DP (2005) Mycorrhizal inoculum potentials of pure reclamation materials and revegetated tailing sands from the Canadian oil sand industry. Mycorrhiza 15:149–158. doi:10.1007/s00572-004-0315-4
  • Brundrett M, Bougher N, Dell B, Grove T, Malajczuk N (1996) Working with mycorrhizas in forestry and agriculture. Australian Centre for International Agricultural Research Monograph 32, Canberra, p 374
  • Bücking H, Kuhn AJ, Schröder WH, Heyser W (2002) The fungal sheath of ectomycorrhizal pine roots: an apoplastic barrier for the entry of calcium, magnesium, and potassium into the root cortex?J Exp Bot 53:1659–1669. doi:10.1093/jxb/erf011
  • Calvo-Polanco M, Zwiazek JJ, Jones MD, MacKinnon MD (2008a) Responses of mycorrhizal jack pine (Pinus banksiana) seedlings to NaCl and boron. Trees (Berl) 22:825–834. doi:10.1007/s00468-008-0243-6
  • Calvo-Polanco M, Zwiazek JJ, Voicu MC (2008b) Responses of ectomycorrhizal American elm (Ulmus americana) seedlings to salinity and soil compaction. Plant Soil 308:189–200. doi: 10.1007/s11104-008-9619-z
  • Drew MC, Läuchli A (1985) Oxygen-dependent exclusion of sodium ions from shoots by roots of Zea mays (cv Pioneer 3906) in relation to salinity damage. Plant Physiol 79:171–176
  • Duby G, Boutry M (2008) The plant plasma membrane proton pump ATPase: a highly regulated P-type ATPase with multiple physiological roles. Pflugers Arch Eur J Physiol. doi:10.1007/ s00424-008-0457-x
  • Franklin JA, Zwiazek JJ (2004) Ion uptake in Pinus banksiana treated with sodium chloride and sodium sulfate. Physiol Plant 120:482–490. doi:10.1111/j.0031-9317.2004.00246.x
  • Grattan SR, Grieve CM (1994) Mineral nutrient acquisition and response by plants grown in saline environments. In: Pessarakli M (ed) Handbook of plant and crop stress. Dekker, New York, pp 203–226
  • Greenway H, Munns R (1980) Mechanisms of salt tolerance in nonhalophytes. Annu Rev Plant Physiol 31:149–190. doi: 10.1146/annurev.pp.31.060180.001053
  • Grunze N, Willmann M, Nehls U (2004) The impact of ectomycorrhiza formation on monosaccharide transporter gene expression in poplar roots. New Phytol 164:147–155. doi:10.1111/j.1469-8137. 2004.01158.x
  • Hung L, Trappe JM (1983) Growth variation between and within species of ectomycorrhizal fungi in response to pH in vitro. Mycologia 75:234–241. doi:10.2307/3792807
  • Jahn T, Palmgren MG (2002) H⁺-ATPases in the plasma membrane: physiology and molecular biology. In: Rengel Z (ed) Handbook of plant growth: pH as a master variable. Dekker, New York, pp 1–22
  • Kamaluddin M, Zwiazek JJ (2004) Effects of root medium pH on water transport in paper birch (Betula papyrifera) seedlings in relation to root temperature and abscisic acid treatments. Tree Physiol 24:1173–1180
  • Karabaghli-Degron C, Sotta B, Bonnet M, Gay G, Le Tacon F (1998) The auxin transport inhibitor 2,3,5-triiodobenzoic acid (TIBA) inhibits the stimulation of in vitro lateral root formation and the colonization of the tap-root cortex of Norway spruce (Picea abies) seedlings by the ectomycorrhizal fungus Laccaria bicolor. New Phytol 140:723–733. doi:10.1046/j.1469-8137.1998.00307.x
  • Karst J, Marczak L, Jones MD, Turkington R (2008) The mutualism–parasitism continuum in ectomycorrhizas: a quantitative assessment using meta-analysis. Ecology 89:1032–1042. doi: 10.1890/07-0823.1
  • Kerkeb L, Donaire JP, Rodríguez-Rosales MP (2001) Plasma membrane H⁺-ATPase activity is involved in adaptation of tomato calli to NaCl. Physiol Plant 111:483–490. doi: 10.1034/j.1399-3054.2001.1110408.x
  • Kernaghan G, Hambling B, Fung M, Khasa D (2002) In vitro selection of boreal ectomycorrhizal fungi for use in reclamation of saline–alkaline habitats. Restor Ecol 10:43–51. doi:10.1046/j. 1526-100X.2002.10105.x
  • Khan MSA, Hamid A, Salahuddin ABM, Quasem A, Karim MA (1997) Effect of NaCl on growth, photosynthesis and mineral ions accumulation of different types of rice (Oryza sativa L.). J Agron Crop Sci 179:149–161. doi:10.1111/j.1439-037X.1997. tb00511.x
  • Langenfeld-Heyser R, Gao J, Ducic T, Tachd P, Lu CF, Fritz E, Gafur A, Polle A (2007) Paxillus involutus mycorrhiza attenuate NaClstress responses in the salt-sensitive hybrid poplar Populus × canescens. Mycorrhiza 17:121–131. doi:10.1007/s00572-006-0084-3
  • Larcher W (2003) Physiological plant ecology, 4th edn. Springer, Berlin, p 450
  • Littell RC, Milliken GA, Stroup WW, Wolfinger RD, Schabenberger O (2006) SAS for mixed models. SAS, Cary, p 813
  • Marjanović Ž, Uehlein N, Kaldenhoff R, Zwiazek JJ, Weiß M, Hampp R, Nehls U (2005) Aquaporins in poplar: what a difference a symbiont makes! Planta 222:258–268. doi:10.1007/s00425-005-1539-z
  • Mason PA (1980) Aseptic synthesis of sheathing (ecto-) mycorrhizas. In: Ingram DS, Helgeson JP (eds) Tissue culture methods for plant pathologists. Oxford, Blackwell, pp 173–178
  • McAfee BJ, Fortin JA (1986) The influence of pH on competitive interaction of ectomycorrhizal mycobionts under field conditions. Can J Res 17:859–864. doi:10.1139/x87-136
  • Muhsin TM, Zwiazek JJ (2002a) Colonization with Hebeloma crustuliniforme increases water conductance and limits shoot sodium uptake in white spruce (Picea glauca) seedlings. Plant Soil 238:217–225. doi:10.1023/A:1014435407735
  • Muhsin TM, Zwiazek JJ (2002b) Ectomycorrhizas increase apoplastic water transport and root hydraulic conductivity in Ulmus americana seedlings. New Phytol 153:153–158. doi:10.1046/j. 0028-646X.2001.00297.x
  • Nguyen H, Calvo-Polanco M, Zwiazek JJ (2006) Gas exchange and growth responses of ectomycorrhizal Picea mariana, Picea glauca and Pinus banksiana seedlings to NaCl and Na₂SO₄.
  • Plant Biol 8:646–652. doi:10.1055/s-2006-924106
  • Redfield E, Croser C, Zwiazek JJ, MacKinnon MD, Qualizza C (2003) Responses of red-osier dogwood (Cornus stolonifera) to oil sands tailings treated with gypsum or alum. J Environ Qual 32:1008–1014
  • Renault S, Croser C, Franklin JA, Zwiazek JJ (2001) Effects of NaCl and Na₂SO₄ on red-osier dogwood (Cornus stolonifera Michx.) seedlings. Plant Soil 233:261–268. doi:10.1023/A: 1010512021353
  • Rengel Z (2002) Role of pH in availability of ions in soil. In: Rengel Z (ed) Handbook of plant growth: pH as the master variable. Dekker, New York, pp 323–350
  • Richards JE (1993) Chemical characterization of plant tissue. In: Carter MR (ed) Soil sampling and methods of analysis, Canadian Society of Soil Science, Lewis, pp 115–139
  • Rincon A, Priha O, Lelu-Walter MA, Bonnet M, Sotta B, Le Tacon F (2005) Shoot water status and ABA responses of transgenic hybrid larch Larix kaempferi 9 L. decidua to ectomycorrhizal fungi and osmotic stress. Tree Physiol 25:1101–1108
  • Saur E, Lambrot C, Loustau D, Rotival N, Trichet P (1995) Growth and uptake of mineral elements in response to sodium chloride of three provenances of maritime pine. J Plant Nutr 18:243–256. doi:10.1080/01904169509364898
  • Šesták Z, Čatský J, Jarvis PG (1971) Plant photosynthetic production. Manual of methods. Dr W Junk, NV, The Hague, pp 818
  • Shannon MC (1997) Adaptation of plants to salinity. Adv Agron 60:76–120
  • Sibole JV, Cabot C, Michalke W, Poschenrieder C, Barceló J (2005) Relationship between expression of the PM H⁺-ATPase, growth and ion partitioning in the leaves of salt-treated Medicago species. Planta 221:557–566. doi:10.1007/s00425-004-1456-6
  • Siemens JA (2008) Effects of nitrogen, pH, and mycorrhizal fungi on the growth, water relations and physiology of trembling aspen (Populus tremuloides) and balsam poplar (Populus balsamifera). PhD Thesis, University of Alberta, Edmonton, pp 229
  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic Press, New York, p 605
  • Tyree MT, Patino S, Bennink J, Alexander J (1995) Dynamic measurements of root hydraulic conductance using a high-pressure flow meter in the laboratory and field. J Exp Bot 46:83–94. doi: 10.1093/jxb/46.1.83
  • Vierheilig H, Coughlan AP, Wyss U, Piché Y (1998) Ink and vinegar, a simple staining technique for arbuscular-mycorrhizal fungi. Appl Environ Microbiol 64:5004–5007
  • Voicu MC, Zwiazek JJ (2004) Cycloheximide inhibits root water flow and stomatal conductance in aspen (Populus tremuloides) seedlings. Plant Cell Environ 27:199–208. doi:10.1111/j. 1365-3040.2003.01135.x
  • Yang Y, Zhang F, Zhao M, An L, Zhang L, Chen N (2007) Properties of plasma membrane H⁺-ATPase in salt-treated Populus euphratica callus. Plant Cell Rep 26:229–235. doi:10.1007/ s00299-006-0220-8
  • Yi H, Calvo-Polanco M, MacKinnon MD, Zwiazek JJ (2008) Responses of ectomycorrhizal Populus tremuloides and Betula papyrifera seedlings to salinity. Environ Exp Bot 62:357–363. doi:10.1016/j.envexpbot.2007.10.008

Uwagi

Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-ddb625de-7bf7-413a-bd77-0bd029992ee8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.