PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 1 |

Tytuł artykułu

Decolourization of sugar beet molasses vinasse by lactic acid bacteria - the effect of yeast extract dosage

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Vinasse is the waste product from the production of ethanol that is most loaded with pollutants. Known methods of treating vinasse allow for a reduction in the pollution load, but do not remove the brown colour. The aim of this study was to investigate the effect of the addition of yeast extract (YE) on the decolourization of sugar beet molasses vinasse by lactic acid bacteria (Lactobacillus plantarum, L. casei, and Pediococcus parvulus). Experiments were performed in batch mode in a BioStat B bioreactor (working volume of 2 dm³) for 72 h at 35.8ºC and pH₀ of 6.5. The medium consisted of 25% v/v vinasse, glucose (38.67 g dm⁻³), and different amounts of yeast extract addition (2.24, 4.48, and 8.96 g dm⁻³). It was observed that an increase in the YE dose in the medium was followed by a decrease in decolourization of the vinasse. The maximum decolourization was 28.36% (YE = 2.24 g dm⁻³). Regardless of the YE amount added to the medium, removal of invert alkaline degradation products content in all experiments was at a similar level (approx. 13%). With an increased dose of YE, an increase in the caramel content was observed. The biggest melanoidins removal (62.3%) was found in the process with the highest YE dose. The acrylamide, 4-methylimidazole, furfural, 5-hydroxymethylfurfural, and 2-acetyl-4-(1,2,3,4)-tetrahydroxy-butylimidazole were completely assimilated.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

28

Numer

1

Opis fizyczny

p.385-392,fig.,ref.

Twórcy

autor
  • Department of Bioprocess Engineering, Wroclaw University of Economics, Wroclaw, Poland
autor
  • Department of Bioprocess Engineering, Wroclaw University of Economics, Wroclaw, Poland
autor
  • Department of Bioprocess Engineering, Wroclaw University of Economics, Wroclaw, Poland
autor
  • Department of Bioprocess Engineering, Wroclaw University of Economics, Wroclaw, Poland

Bibliografia

  • 1. ĆOSOVIĆ B., VOJVODIĆ V., BOŠKOVIĆ N., PLAVŠIĆ M., LEE C. Characterization of natural and synthetic humic substances (melanoidins) by chemical composition and adsorption measurements. Org. Geochem. 41 (2), 200, 2010.
  • 2. COCA M., GARCÍA T., GONZÁLEZ G., PEÑA M., GARCÍA A.J. Study of coloured components formed in sugar beet processing. Food Chem. 86 (3), 421, 2004.
  • 3. POLAK-ŚLIWIŃSKA M., ŁAMEJKO Ł., KUBIAK M.S. Patulin and 5-HMF content in fruit and vegetable juices from ecological and commercial productionBromat. Chem. Toksykol. 46 (1), 80, 2013.
  • 4. NATIONAL INSTITUTES OF HEALTH, NTP technical report on the toxicity studies of 2- and 4-Methylimidazole (CAS No. 693-98-1 and 822-36-6) administered in feed to F344/N rats and B6C3F1 mice, Toxicity report series, 2004.
  • 5. NATIONAL INSTITUTES OF HEALTH, NTP technical report on the toxicology and carcinogenesis studies of 4-methylimidazole in F344/N rats and B6C3F1 mice (feed studies), Toxicity report series, 2007.
  • 6. INTERNATIONAL AGENCY FOR RESEARCH ON CANCER. Working group on the evaluation of carcinogenic risks to humans 2-Methylimidazole. IARC Monogr. Eval. Carcinog. Risks Hum. 101, 142, 2012.
  • 7. INTERNATIONAL AGENCY FOR RESEARCH ON CANCER. Working group on the evaluation of carcinogenic risks to humans 4-Methylimidazole. IARC Monogr. Eval. Carcinog. Risks Hum. 101, 447, 2012.
  • 8. EUROPEAN FOOD SAFETY AUTHORITY. Refined exposure assessment for caramel colours (E 150a, c, d). EFSA J. 10, 1, 2012.
  • 9. AGARWAL S.C., PANDEY S.G. Soil pollution by spent wash discharge: depletion of manganese (II) and impairment of its oxidation. J. Environ. Biol. 15 (1), 49, 1994.
  • 10. CHOWDHARY P., RAJ A., BHARAGAVA R. N. Envirinmental pollution and health hazards from distillery wastewater and treatment approaches to combat the environmental threats: A review. Chemosphere. 2017.
  • 11. BHARAGAVA R.N., CHANDRA R., RAI V. Isolation and characterization of aerobic bacteria capable of the degradation of synthetic and natural melanoidins from distillery effluent. World J. Microbiol. Biotechnol. 25 (5), 737, 2009.
  • 12. KRZYWONOS M., SERUGA P., WILK M., BOROWIAK D., STELMACH K. Separation of colorants in sugar beet vinasse using gel chromatography. Acta Sci. Pol. Biotechnol. 15 (1), 15, 2016.
  • 13. SERUGA P., KRZYWONOS M. Screening of medium components and process parameters for sugar beet molasses vinasse decolorization by Lactobacillus plantarum using Plackett-Burman experimental design. Pol. J. Environ. Stud. 24 (2), 683, 2015.
  • 14. ENVIRONMENTAL PROTECTION AGENCY. Method 8316 (SW-846): Acrylamide, acrylonitrile and acrolein by High Performance Liquid Chromatography (HPLC), 1994.
  • 15. CIOLINO L.A. Determination and classification of added caramel color in adulterated acerola juice formulations. J. Agric. Food Chem. 46 (5), 1746, 1998.
  • 16. SLUITER A., HAMES B., RUIZ R., SCARLATA C., SLUITER J., TEMPLETON D. Determination of sugars, byproducts, and degradation products in liquid fraction process samples. Technical Report NREL/TP-510-42623, National Renewable Energy Laboratory, U.S. Department of Energy, 2008.
  • 17. ANONYMOUS. Handbook of photometrical operation analysis. Dr. Lange BDB 079, 2000 [In German].
  • 18. AMERICAN PUBLIC HEALTH ASSOCIATION. Standard methods for examination of water and wastewater, 22nd edn. APHA, AWWA, WEF, Washington, 2012.
  • 19. SANTAL A.R., SINGH N.P., SAHARAN B.S. Biodegradation and detoxification of melanoidin from distillery effluent using an aerobic bacterial strain SAG₅ of Alcaligenes faecalis. J. Hazard. Mater. 193, 319, 2011.
  • 20. YADAV S., CHANDRA R. Biodegradation of organic compounds of molasses melanoidin (MM) from biomethanated distillery spent wash (BMDS) during the decolourization by a potential bacterial consortium. Biodegradation. 23 (4), 609, 2012.
  • 21. KRZYWONOS M., CHAŁUPNIAK A., ZABOCHNICKA-ŚWIĄTEK M. Decolorization of beet molasses vinasse by Bacillus megaterium ATCC 14581. Biorem. J. 21 (2), 81, 2017.
  • 22. ILLAKKIAM D., SUBHA D., AHILAV., GEETHA N. Decolorization of Alizarin red S dye by bacterial strains isolated from industrial effluents. Int. J. Plant Anim. Environ. Sci. 6 (1), 268, 2016.
  • 23. PAL S., VIMALA Y. Bioremediation and decolorization of distillery effluent by novel microbial consortium. Euro. J. Exp. Bio. 2 (3), 496, 2012.
  • 24. TIWARI S., RAI P., YADAV S.K., GAUR R. A novel thermotolerant Pediococcus acidilactici B-25 strain for color, COD, and BOD reduction of distillery effluent for end use application. Environ. Sci. Pollut. Res. 20 (6), 4046, 2013.
  • 25. TONDEE T., SIRIANUNTAPIBOON S. Decolorization of molasses wastewater by Lactobacillus plantarum No. PV71-1861. Bioresour. Technol. 99 (14), 6258, 2008.
  • 26. RAVIKUMAR R., VASANTHI N.S., SARAVANAN K. Single factorial experimental design for decolorizing anaerobically treated distillery spent wash using Cladosporium cladosporioides. Int. J. Environ. Sci. Tech. 8 (1), 97, 2011.
  • 27. BOOPATHY M.A., SENTHILKUMAR S.N.S. Media optimization for the decolorization of distillery spent wash by biological treatment using Pseudomonas fluorescence. Int. J. Innov. Eng. Technol. 4 (1), 8, 2014.
  • 28. BHARAGAVA R.N., CHANDRA R. Biodegradation of the major color containing compounds in distillery wastewater by an aerobic bacterial culture and characterization of their metabolites. Biodegradation. 21 (5), 703, 2010.
  • 29. TIWARI S., GAUR R., RAI P., TRIPATHI A. Decolorization of distillery effluent by thermotolerant Bacillus subtilis. Am. J. App. Sci. 9 (6), 798, 2012.
  • 30. TIWARI S., GAUR R., SINGH R. Decolorization of a recalcitrant organic compound (Melanoidin) by a novel thermotolerant yeast, Candida tropicalis RG-9. BMC Biotechnol. 12 (30), 1, 2012.
  • 31. SANTAL A.R., SINGH N.P., SAHARAN B.S. A novel application of Paracoccus pantotrophus for the decolorization of melaoidins from distillery effluent under static conditions. J. Environ. Manage. 169, 78, 2016.
  • 32. TAN L., HE M., SONG L., FU X., SHI S. Aerobic decolorization, degradation and detoxification of azo dyes by a newly isolated salt-tolerant yeast Scheffersomyces spartinae TLHS-SF1. Biores. Technol. 203, 287, 2016.
  • 33. MIYATA N., MORI T., IWAHORI K., FUJITA M. Microbial decolorization of melanoidin-containing wastewaters: Combined use of activated sludge and the fungus Coriolus hirsutus. J. Biosci. Bioeng. 89 (2), 145, 2000.
  • 34. KUMAR P., CHANDRA R. Decolourization and detoxification of synthetic molasses melanoidins by individual and mixed cultures of Bacillus spp. Bioresour. Technol. 97 (16), 2096, 2006.
  • 35. MOHANA S., DESAI C., MADAMWAR D. Biodegradation and decolourization of anaerobically treated distillery spent wash by a novel bacterial consortium. Biores. Technol. 98 (2), 333, 2007.
  • 36. NAIK N., JAGADEESH K. S., NOOLVI M. N. Enhanced degradation of melanoidin and caramel in biomethaned distillery spentwash by microorganisms isolated from mangroves. Iranica J. Energ. Environ. 1 (4), 347, 2010.
  • 37. WILK M., KRZYWONOS M., SERUGA P. Microbiological colourants removal from sugar beet molasses vinasse – the effects of process parameters and vinasse dillution. Econ. Environ. Stud. 17 (2), 335, 2017.
  • 38. LIMKHUANSUWAN V., CHAIPRASERT P. Decolorization of molasses melanoidins and palm oil mill effluent phenolic compounds by fermentative lactic acid bacteria. J. Environ. Sci. 22 (8), 1209, 2010.
  • 39. RAVIKUMAR R., VASANTHI N. S., SARAVANAN K. Biodegradation and decolorization of distillery spent wash with product release by a novel strain Cladosporium cladosporioides: optimization and biokinetics. Chem. Biochem. Eng. 27 (3), 373, 2013.
  • 40. GUPTA M., MISHRA P. K., KUMAR A., TIWARI S. Decolorization of molasses melanoidin by Candida Sp. Indian J. Appl. Pure Bio. 26 (2), 199, 2011.
  • 41. SIRIANUNTAPIBOON S., PHOTHILANGKA P., OHMOMO S. Decolorization of molasses wastewater by a strain No.BP103 of acetogenic bacteria. Bioresour. Technol. 92 (1), 31, 2004.
  • 42. OHMOMO S., ITOH N., WATANABE Y., KANEKO Y., TOZAWA Y., UEDA K. Decolorization of molasses waste water with mycelia of Coriolus versicolor Ps4a. Agric Biol. Chem. 49 (9), 2551, 1985.
  • 43. SIRIANUNTAPIBOON S., ZOHSALAM P., OHMOMO S. Decolorization of molasses wastewater by Citeromyces sp. WR-43-6. Process. Biochem. 39 (8), 917, 2004.
  • 44. KRZYWONOS M., SERUGA P. Decolorization of sugar beet molasses vinasse, a high-strength distillery wastewater, by lactic acid bacteria. Pol. J. Environ. Stud. 21 (4), 943, 2012.
  • 45. KRZYWONOS M., TRZEPAK K., WILK M. Removal of beet vinasse colorants using Pediococcus parvulus MiLab099: effect of yeast extract and concentration of vinasse. Acta Sci. Pol. Biotechnol. 13 (4), 29, 2014.
  • 46. KRZYWONOS M., KOPACZ M., WILK M. DDecolorization of molasses vinasse with using a strain of lactic acid bacteria Lactobacillus casei 0848. Acta Sci. Pol. Biotechnol. 13 (3), 19, 2014.
  • 47. DWYER J., KAVANAGH L., LANT P. The degradation of dissolved organic nitrogen associated with melanoidin using a UV/H2O2 AOP. Chemosphere. 71 (9), 1745, 2008.
  • 48. FENG Y., QI X., JIAN H., SUN R., JIANG J. Effect of inhibitors on enzymatic hydrolysis and simultaneous saccharification fermentation for lactic acid production from steam explosion pretreated Lespedeza stalks. BioResources. 7 (3), 3755, 2012.
  • 49. JANG S.-S., SHIRAI Y., UCHIDA M., WAKISAKA M. Potential use of Gelidium amansii acid hydrolysate for lactic acid production by Lactobacillus rhamnosus. Food Technol. Biotechnol. 51 (1), 131, 2013.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-dd702201-2d4a-47cd-927b-2e70100eab42
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.