PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 26 | 1 |

Tytuł artykułu

Motion control and collision avoidance algorithms for unmanned surface vehicle swarm in practical maritime environment

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The issue of controlling a swarm of autonomous unmanned surface vehicles (USVs) in a practical maritime environment is studied in this paper. A hierarchical control framework associated with control algorithms for the USV swarm is proposed. In order to implement the distributed control of the autonomous swarm, the control framework is divided into three task layers. The first layer is the tele-operated task layer, which delivers the human operator’s command to the remote USV swarm. The second layer deals with autonomous tasks (i.e. swarm dispersion, or avoidance of obstacles and/or inner-USV collisions), which are defined by specific mathematical functions. The third layer is the control allocation layer, in which the control inputs are designed by applying the sliding mode control method. The motion controller is proved asymptotically stable by using the Lyapunov method. Numerical simulation of USV swarm motion is used to verify the effectiveness of the control framework

Słowa kluczowe

Wydawca

-

Rocznik

Tom

26

Numer

1

Opis fizyczny

p.107-116,fig.,ref.

Twórcy

autor
  • College of Shipbuilding Engineering, Harbin Engineering University, 145 Nantong Street, 150001 Harbin, China
autor
  • College of Shipbuilding Engineering, Harbin Engineering University, 145 Nantong Street, 150001 Harbin, China
autor
  • Zhuhai Yunzhou Intelligence Technology Ltd., China
autor
  • College of Shipbuilding Engineering, Harbin Engineering University, 145 Nantong Street, 150001 Harbin, China
autor
  • College of Shipbuilding Engineering, Harbin Engineering University, 145 Nantong Street, 150001 Harbin, China
autor
  • College of Shipbuilding Engineering, Harbin Engineering University, 145 Nantong Street, 150001 Harbin, China

Bibliografia

  • 1. Do K. D. Practical formation control of multiple underactuated ships with limited sensing ranges. Robotics and Autonomous Systems, 2011, 59(6): 457-471.
  • 2. Zhuang J.Y., Su Y.M., Liao Y.L., Sun H. Unmanned surface vehicle local path planning based on marine radar. Journal of Shanghai Jiaotong University, 2012, 9: 006.
  • 3. Shojaei K. Neura l adapt ive robust cont rol of u nderactuated marine surface vehicles with input saturation. Applied Ocean Research, 2015, 53:267-279.
  • 4. Wai R.J., Liu C.M., Lin Y.W. Design of switching path-planning control for obstacle avoidance of mobile robot. Journal of the Franklin Institute, 2011, 348(4): 718-737.
  • 5. Cui R., Ge S.S., How B.V.E., Choo Y.S. Leader–follower formation control of underactuated autonomous underwater vehicles. Ocean Engineering, 2010, 37(17): 1491-1502 .
  • 6. Peng Z., Wang D., Chen Z., Hu X. Adaptive dynamic surface control for formations of autonomous surface vehicles with uncertain dynamics. IEEE Transactions on Control Systems Technology, 2013, 21(2): 513-520.
  • 7. Ding L., Guo G. Formation control for ship fleet based on backstepping. Control and Decision, 2012, 27(2): 299-303.
  • 8. Mehrjerdi H., Ghomman J., Saad M. Nonlinear coordination control for a group of mobile robots using a virtual structure. Mechatronics, 2011, 21(7): 1147-1155.
  • 9. Do K.D. Formation control of underactuated ships with elliptical shape approximation and limited communication ranges. Automatica, 2012, 48: 1380-1388.
  • 10. Glotzbach T., Schneider M., Otto P. Cooperative line of sight target tracking for heterogenous unmanned marine vehicle teams: From theory to practice. Robotics and Autonomous Systems, 2015, 67: 53-60.
  • 11. Johnson J.T. A Brief Investigation of Swarm Theory and Applications. ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2009: 209-218.
  • 12. Bae J., Kim Y. Adaptive controller design for spacecraft formation flying using sliding mode controller and neural networks. Journal of the Franklin Institute, 2012, 349(2): 578-603.
  • 13. Wang H. Flocking of networked uncertain Euler–Lagrange systems on directed graphs. Automatica, 2013, 49(9): 2774-2779.
  • 14. Cepeda-Gomez R., Olgac N., Sierra D.A. Application of sliding mode control to swarms under conflict. IET control theory & applications, 2011, 5(10): 1167-1175.
  • 15. Franchi A., Secchi C., Son H.I., Bülthoff H.H. Bilateral teleoperat ion of g roups of mobi le robots w it h t ime-va r y ing topology. IEEE Transactions on Robotics, 2012, 28(5): 1019-1033.
  • 16. Liu Y.C. Task-space coordination control of bilateral human–swarm systems. Journal of the Franklin Institute, 2015, 352(1): 311-331.
  • 17. Wan L., Dong Z.P., Li Y.M., He B. Global asymptotic stabilization control of incomplete symmetry underactuated USV. Journal of Huazhong University of Science and Technology, 2014, 8(42): 48-53.
  • 18. Liu Y.C., Chopra N. Controlled synchronization of heterogeneous robotic manipulators in the task space. IEEE Transactions on Robotics, 2012, 28(1): 268-275.
  • 19. Stipanović D.M., Hokayem P.F., Spong M.W., Siljak D. Cooperative avoidance control for multiagent systems. Journal of Dynamic Systems, Measurement, and Control, 2007, 129(5): 699-707.
  • 20. Schwager M., Rus D., Slotine J.J. Decentralized, adaptive coverage control for networked robots. The International Journal of Robotics Research, 2009, 28(3): 357-375.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-dd17061e-6843-402a-b676-d22b3adb82bf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.