EN
The present study employed a sand culture experiment with three levels of zinc viz., 0.065 (control), 65.0 and 130 mg l⁻¹ Zn (excess) as zinc sulfate, respectively, in sugarcane (Saccharum spp.), cultivar CoLk 8102. The results indicated growth depression, dark green leaves, decreased root number and length and sharp depression in mitotic activity of roots due to high doses of Zn (65 and 130 mg l⁻¹); effects were significant at 130 mg l⁻¹ Zn supply. The endogenous ion contents measurements revealed roots to be the major sink for excess Zn with lower amounts in leaves of sugarcane plants. High level of Zn decreased total phosphorus in leaves and increased it in roots. Fe and Cu content decreased, while, Mn increased in sugarcane plants due to high Zn in the growing medium. Plants experienced oxidative stress when exposed to higher levels of zinc. Biochemical investigations indicated high level of hydrogen peroxide, malondialdehyde contents with high chlorophyll a, b and carotenoids contents and activity of superoxide dismutase, catalase and peroxidase enzymes under high Zn conditions. These findings confirm suggest that excess Zn adversely affects root growth and mitotic efficiency, enhances chromosomal aberrations and increases growth and nutrient accumulation abnormalities, as well as oxidative stress.