PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 27 | 4 |

Tytuł artykułu

Investigating biomass formations at different depths in a slow sand filter

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
A laboratory-scale slow sand filtration (SSF) system was used to investigate biomass formation in different depths of SSF depending on various operating conditions in regard to filtration rate and influent iron-manganese concentrations. Results suggest that biomass formation occurs mainly in the uppermost 1.5 cm of the filter bed with slight contributions from layers between 1.5 cm and 14.5 cm. The highest volatile solids (VS) accumulation was observed in the uppermost layer as 16.93±0.07 mgVS/g dry sand, and the accumulation was found to be a function of both filtration rate and influent iron-manganese concentrations. Hydraulic conductivities were tested as a measure of biomass formation. The highest initial value of hydraulic conductivity was measured as 13.7 μm/s, while the lowest values ranged from 3.28 to 6.62 μm/s at the end of 55 days of operation. Hydraulic conductivities of the upper layers decreased quickly with time, while slight reductions were observed in hydraulic conductivities of the lower layers.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

27

Numer

4

Opis fizyczny

p.1463-1474,fig.,ref.

Twórcy

autor
  • Environmental Engineering Department, Faculty of Civil Engineering, Yildiz Technical University, 34220 Esenler, Istanbul, Turkey
autor
  • Environmental Engineering Department, Faculty of Civil Engineering, Yildiz Technical University, 34220 Esenler, Istanbul, Turkey
autor
  • Environmental Engineering Department, Faculty of Civil Engineering, Yildiz Technical University, 34220 Esenler, Istanbul, Turkey
autor
  • Environmental Engineering Department, Faculty of Civil Engineering, Yildiz Technical University, 34220 Esenler, Istanbul, Turkey

Bibliografia

  • 1. ÖZER S., YILDIZ S., KARAKUS C.B. Comparison of manganese removal efficiency for kaloratory and plant scale in Sivas 4 Eylül Dam potable water. J. Fac. Eng. Arch. Selcuk Univ. 26 (1), 1, 2011.
  • 2. GRACE M.A., HEALY M.G., CLIFFORD E. Performance and surface clogging in intermittently loaded and slow sand filters containing novel media. J. Environ. Manage. 180, 102, 2016.
  • 3. GUCHI, E. Review on slow sand filtration in removing microbial contamination and particles from drinking water. American Journal of Food and Nutrition 3 (2), 47, 2015.
  • 4. POMPEI C.M.E., CIRIC L., CANALES M., KARU K., VIEIRA E.M., CAMPOS L.C. Influence of PPCPs on the performance of intermittently operated slow sand filters for household water purification. Sci. Total Environ. 581-582, 174, 2017.
  • 5. OKI L.R., BOGAGHI S., LEE E., HAVER D., PITTON B., NACKLEY L., MATHEWS D.M. Elimination of Tobacco mosaic virus from irrigation runoff using slow sand filtration. Sci. Hortic-Amsterdam. 217, 107, 2017.
  • 6. RAMADAN M. Efficiency of new Miswak, titanium dioxide and sand filters in reducing pollutants from wastewater. Beni - Suef University Journal of Basic and Applied Sciences. 4, 47, 2015.
  • 7. LAUTENSCHLAGER K., HWANG C., LING F., LIU W-T., BOON N., KOSTER O., EGLI T., HAMMES F. Abundance and composition of indigenous bacterial communities in a multi-step biofiltration-based drinking water treatment plant. Water Res. 62, 40, 2014.
  • 8. LEE E., OKI L.R. Slow sand filters effectively reduce Phytophthora after a pathogen switch from Fusarium and a simulated pump failure. Water Res. 47, 5121, 2013.
  • 9. MWAKABONA H.T., NDE-TCHOUPE A.I., NJAU K.N., NOUBACTEP C., WYDRA K.D. Metallic iron for safe drinking water provision: Considering a lost knowledge. Water Res. 117, 127, 2017.
  • 10. SCHOLZ M. Chapter 10: Slow Filtration. Wetlands for Water Pollution Control (Second Edition); Publisher: Elsevier Ltd., USA, 61, 2016.
  • 11. ÖSTERDAHL M. Slow sand filtration as a water treatment method - An inventorying study of slow sand filters purification rates in rural areas in Colombia. Bachelor Thesis, Bachelor of Science in Environmental and Energy Engineering, Karlstads University, Sweden, 2015.
  • 12. SEEGER E.M., BRAECKEVELT M., REICHE N., MULLER J.A., KASTNER M. Removal of pathogen indicators from secondary effluent using slow sand filtration: Optimization approaches. Ecol. Eng. 95, 635, 2016.
  • 13. SCHIJVEN J.F., VAN DEN BERG H.H.J.L., COLIN M., DULLEMONT Y., HIJNEN W.A.M., MAGIC-KNEZEV A., OORTHUIZEN W.A., WUBBELS G. A mathematical model for removal of human pathogenic viruses and bacteria by slow sand filtration under variable operational conditions. Water Res. 47, 2592, 2013.
  • 14. CAMPOS L.C., SU M.F.J., GRAHAM N.J.D., SMITH S.R. Biomass development in slow sand filters. Water Res. 36, 4543, 2002.
  • 15. BRANDT M.J., JOHNSON K.M., ELPHINSTON A.J., RATNAYAKA D.D. Chapter 9: Water Filtration. Twort’s Water Supply (Seventh Edition); Publisher: Elsevier Ltd., USA, 367, 2017.
  • 16. MANAV DEMIR N. Experimental Study of Factors that Affect Iron and Manganese Removal in Slow Sand Filters and Identification of Responsible Microbial Species. Pol. J. Environ. Stud. 25 (4), 1453, 2016.
  • 17. LAW S.P., MELVIN M.M.A.L., LAMB A.J. Visualisation of the establishment of a heterotrophic biofilm within the schmutzdecke of a slow sand filter using scanning electron microscopy. Biofilm Journal. 6 (1), 2001. Available online: http://www.bioline.org. br/request?bf01001 (accessed on 07 July 2017).
  • 18. TYAGI V.K., KHAN A.A., KAZMI A.A., MEHROTRA I., CHOPRA A.K. Slow sand filtration of UASB reactor effluent: A promising post treatment technique. Desalination. 249, 571, 2009.
  • 19. GRAHAM N.J.D., COLLINS M.R. Chapter 1: Slow sand filtration: recent research and application perspectives. Progress in Slow Sand and Alternative Biofiltration Processes Further Developments and Applications, Part I General Overview. IWA Publishing, UK, pp. 3-16, 2014. Available online: https://books.google.com.tr/books?id=mbgDBAAAQBAJ&pg=PA3&lpg=PA3&dq=slow+sand+filtration:+recent+research+and+application+perspectives&source=bl&ots=V_GWU4Rt39&sig=8Hax_U6tFB_WDXE_afvn2bIlYdg&hl=tr&sa=X&ved=0ahUKEwjF_P2JqKXUAhUEfywKHf8kBEYQ6AEIODAB#v=onepage&q=slow%20sand%20filtration%3A%20recent%20research%20and20application%20perspectives&f=false (accessed on 07 July 201).
  • 20. LIVINGSTON P.A. Management of the schmutzdecke layer of a slow sand filter. Doctor of Philosophy, The University of Arizona, 2013. Available online: http://hdl.handle.net/10150/293439 (accessed on 07 July 2017).
  • 21. JOUBERT E.D., PILLAY B. Visualisation of the microbial colonization of a slow sand filter using an Environmental Scanning Electron Microscope. Electron. J. Biotechn. 11 (2), 1, 2008.
  • 22. LI Z., HASSAN A.A., SAHLE-DEMESSIE E., SORIAL G.A. Transport of nanoparticles with dispersant through biofilm coated drinking water sand filters. Water Res. 47, 6457, 2013.
  • 23. CAMPOS L.C., SMITH S.R., GRAHAM N.J.D. Deterministic-Based model of slow sand filtration. I: Model development. J. Environ. Eng-ASCE. 132 (8), 872, 2006.
  • 24. CAMPOS L.C., SMITH S.R., GRAHAM N.J.D. Deterministic-Based model of slow sand filtration. II: Model application. J. Environ. Eng-ASCE. 132 (8), 887, 2006.
  • 25. LYNN T.J., WANJUGI P., HARWOOD V.J., ERGAS S.J. Dynamic performance of biosand filters. J. Am. Water Works Ass. 2013. Available online: http://dx.doi.org/10.5942/jawwa.2013.105.0116 (accessed on 07 July 2017).
  • 26. OOSTERBAAN R.J., NIJLAND H.J. Determining the saturated hydraulic conductivity. Chapter 12 in: H.P.Ritzema (Ed.), Drainage Principles and Applications. International Institute for Land Reclamation and Improvement ( ILRI), Publication 16, second revised edition, Wageningen, The Netherlands, 1994. Available online: https://www.waterlog.info/pdf/chap12.pdf (accessed on 07 July 2017).
  • 27. BTATKEU-K B.D., OLVERA-VARGAS H., TCHATCHUENG J.B., NOUBACTEP C., CARE S. Determining the optimum Fe0 ratio for sustainable granular Fe0/sand water filters. Chem. Eng. J. 247, 265, 2014.
  • 28. BARRETT J.M., BRYCK J., COLLINS M.R., JANONIS B.A., LOGSDON G.S. Manual of Design for Slow Sand Filtration. AWWA Research Foundation and American Water Works Association, U.S.A, 1991. Available online: http://protosh2o.act.be/VIRTUELE_BIB/Watertechniek/350_Waterbehandeling/353.1_HEN_E5_Manual_Design.pdf.pdf (accessed on 07 July 2017).
  • 29. SOMES N., HOBAN A., LEINSTER S. Guidelines for filter media in biofiltration systems (Version 3.01). FAWB Facility for Advancing Water Biofiltration, 2009. Available online: http://graie.org/SOCOMA/IMG/pdf/FAWB_Filter_media_guidelines_v3_June_2009-2.pdf (accessed on 07 July 2017).
  • 30. MANAV DEMIR N., ATCI E.B., DEMIR S. Effects of varying inlet iron and manganese concentrations on slow sand filter performance. Sigma J. Eng. & Nat. Sci. 34 (4), 505, 2016.
  • 31. HEDEGAARD M.J., ARVIN E., CORFITZEN C.B., ALBRECHTSEN H-J. Mecoprop (MCPP) removal in full-scale rapid sand filters at a groundwater-based waterworks. Sci. Total Environ. 499, 257, 2014.
  • 32. HOYLAND V.W., KNOCKE W.R., FALKINHAM III J.O., PRUDEN A., SINGH G. Effect of drinking water treatment process parameters on biological removal of manganese from surface water. Water Res. 66, 31, 2014.
  • 33. LI X-K., CHU Z-R., LIU Y-J., ZHU M-T., YANG L., ZHANG J. Molecular characterization of microbial populations in full-scale biofilters treating iron, manganese and ammonia containing groundwater in Harbin, China. Bioresource Technol. 147, 234, 2013.
  • 34. CHENG Q., NENGZI, L., BAO L., HUANG Y., LIU S., CHENG X., LI B., ZHANG J. Distribution and genetic diversity of microbial populaions in the pilot-scale biofilter for simultaneous removal of ammonia, iron and manganese from real groundwater. Chemosphere. 182, 450, 2017.
  • 35. YANG L., LI X., CHU Z., REN Y., ZHANG J. Distribution and genetic deversity of the microorganisms in the biofilter for the simultaneous removal of arsenic, iron and manganese from simulated groundwater. Bioresource Technol. 156, 384, 2014.
  • 36. AYDIN M.E. Effects of design and operational variables on filtrate quality of slow sand filters. Pamukkale University Engineering College Journal of Engineering Sciences. 4 (1-2), 527, 1998.
  • 37. BAR-ZEEV E., BELKIN N., LIBERMAN B., BERMAN T., BERMAN-FRANK I. Rapid sand filtration pretreatment for SWRO: Microbial maturation dynamics and filtration efficiency of organic matter. Desalination. 286, 120, 2012.
  • 38. LINLIN W., XUAN Z., MENG Z. Removal of dissolved organic matter in municipal effluent with ozonation, slow sand filtration and nanofiltration as high quality pre-treatment option for artificial groundwater recharge. Chemosphere. 83, 693, 2011.
  • 39. ZHENG X., ERNST M., JEKEL M. Pilot-scale investigation on the removal of organic foulants in secondary effluent by slow sand filtration prior to ultrafiltration. Water Res. 44, 3203, 2010.
  • 40. JIN X., COLLING T., NDIONGUE S. Indicators of filter ripening for slow sand filter. WCWC Walkerton Clean Water Centre, 16th Canadian National Conference on Drinking Water, Oct 26-29, 2014. Available online: http://www.cwwa.ca/pdf_files/16DWC_presentations/D3-Jin.pdf (accessed on 07 July 2017).
  • 41. HO L., MEYN T., KEEGAN A., HOEFEL D., BROOKES J., SAINT C.P., NEWCOMBE G. Bacterial degradation of microcystin toxins within a biologically active sand filter. Water Res. 40, 768, 2006.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-db95bb8a-3fc3-4909-bd38-8f473b5fe5cb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.