PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2016 | 62 | 3 |

Tytuł artykułu

Medicinal properties of fungi occurring on Betula sp. trees. A review

Treść / Zawartość

Warianty tytułu

PL
Właściwości lecznicze grzybów występujących na brzozie. Przegląd

Języki publikacji

EN

Abstrakty

EN
The article presents the chemical costituents and pharmacological properties of polyporoid fungi found on birch, namely Piptoporus betulinus, Inonotus obliquus, Lenzites betulina, Fomes fomentarius, and Trametes versicolor. The in vitro and in vivo studies on the effect of different extracts from above-mentioned fungi on the human organism shown anti-cancer, anti-inflammatory, antiviral, antibacterial and immunostimulant activity, conditioned by the presence of such compounds as polysaccharides, polyphenols or terpenes. These fungi are commonly found in Poland and may superbly compete with Ganoderma lucidum (Reishi) or Lentinula edodes (Shitake) used in Asia for medicinal purposes.
PL
W artykule przedstawiono chemizm i właściwości farmakologiczne owocników grzybów poliporoidalnych występujących na brzozie, mianowicie Piptoporus betulinus, Inonotus obliquus, Lenzites betulina, Fomes fomentarius i Trametes versicolor. Przeprowadzone badania in vitro i in vivo wpływu różnych wyciągów z opisanych owocników grzybów na organizm ludzki, wykazały działanie przeciwnowotworowe, przeciwzapalne, przeciwwirusowe, przeciwbakteryjne i immunostymulujące, uwarunkowane obecnością takich związków jak polisacharydy, polifenole czy terpeny. Grzyby te występują powszechnie w Polsce i w znakomity sposób mogą konkurować ze stosowanymi w celach leczniczych w Azji Ganoderma lucidum (Reishi) oraz Lentinula edodes (Shitake).

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

62

Numer

3

Opis fizyczny

p.63-76,fig.,ref.

Twórcy

  • Department of Pharmacognosy, Poznan University of Medical Sciences, Swiecickiego 4, 60-781 Poznan, Poland
autor
  • Department of Pharmacognosy, Poznan University of Medical Sciences, Swiecickiego 4, 60-781 Poznan, Poland
autor
  • Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland

Bibliografia

  • 1. Łakomy P, Kwaśna P. Atlas Hub. Warszawa. Multico Oficyna Wydawnicza, 2008.
  • 2. Wasser SP. Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Microbiol Biotechnol 2002; 60:258–274.
  • 3. Kardošová A, Babor K, Rosík J, Kubala Ĵ. Polysaccharides of wood-destroying fungus Fontes fomentarius (L.) Fr. extracted with water. Chem zvesti 1969; 23:454-461.
  • 4. Chen W, Zhao Z, Li Y. Simultaneous increase of mycelial biomass and intracellular polysaccharide from Fomes fomentarius and its biological function of gastric cancer intervention. Carbohyd Polym 2011; 85:369-375. doi: http://dx.doi.org/10.1016/j.carbpol.2011.02.035
  • 5. Kim SH, Jakhar R, Kang S.C. Apoptotic properties of polysaccharide isolated from fruiting bodies of medicinal mushroom Fomes fomentarius in human lung carcinoma cell line. Saudi J Biol Sci 2015; 22(4):484-90. doi: http://dx.doi.org/10.1016/j.sjbs.2014.11.022
  • 6. Grienke U, Zöll M, Peintner U, Rollinger JM. European medicinal polypores – A modern view on traditional uses. J Ethnopharmacol 2014; 154:564-583. doi: http://dx.doi.org/10.1016/j.jep.2014.04.030
  • 7. Ramberg JE, Nelson ED, Sinnott RA. Immunomodulatory dietary polysaccharides: a systematic review of the literature. Nutr J 2010; 9:54. doi: http://dx.doi.org/10.1186/1475-2891-9-54
  • 8. Yang QY, Wu S. Polysaccharide Peptide of Coriolus versicolor, 1998, http://www.psp-research.com.
  • 9. Kuriyama I, Nakajima Y, Nishida H, Konishi T, Takeuchi T, Sugawara F et al. Inhibitory effects of low molecular weight polyphenolics from Inonotus obliquus on human DNA topoisomerase activity and cancer cell proliferation. Mol Med Rep 2013; 8:535-542. doi: http://dx.doi.org/10.3892/mmr.2013.1547
  • 10. Nomura M, Takahashi T, Uesugi A, Tanaka R, Kobayashi S. Inotodiol, a lanostane triterpenoid, from Inonotus obliquus inhibits cell proliferation through caspase-3-dependent apoptosis. Anticancer Res 2008; 28:2691-2696.
  • 11. Nakata T, Taji S, Yamada T, Tanaka R. New lanostane triterpenoids, inonotsutriols d, and E from Inonotus obliquus. Bulletin of Osaka University of Pharmaceutical Sciences 2009; 3.
  • 12. Youn MJ, Kim JK, Park SY, Kim Y, Kim SJ, Lee JS et al. Chaga mushroom (Inonotus obliquus) induces G0/G1 arrest and apoptosis in human hepatoma HepG2 cells. World J Gastroentero 2008; 14(4):511-517. doi: http://dx.doi.org/10.3748/wjg.14.511
  • 13. Song FQ, Liu Y, Kong XS, Chang W, Song G. Progress on understanding the anticancer mechanisms of medicinal mushroom: Inonotus obliquus. Asian Pac J Cancer P 2013; 14(3):1571-1578.
  • 14. Zhang Y, Xiao Y, Wang P, Liu Q. Compositions and anti-tumor activity of Pyropolyporus fomentarius petroleum ether fraction in vitro and in vivo. PLoS ONE 2014; 9(10):e109599. doi: http://dx.doi.org/10.1371/journal.pone.0109599.
  • 15. Ling H, Zhou L, Jia X, Gapter LA, Agarwal R, Ng K. Polyporenic Acid c induces caspase-8-mediated apoptosis in human lung cancer a549 cells. Mol Carcinogen 2009; 48:498–507. doi: http://dx.doi.org/10.1002/mc.20487
  • 16. Park YM, Kim IT, Park HJ, Choi JW, Park KY, Lee JD et al. Anti-inflammatory and anti-nociceptive effects of the methanol extract of Fomes fomentarius. Biol Pharm Bull 2004; 27(10):1588-1593. doi: http://dx.doi.org/10.1248/bpb.27.1588
  • 17. Wangun HVK, Berg A, Hertel W, Nkengfack AE, Hertweck Ch. Anti-inflammatory and anti-hyaluronate lyase activities of lanostanoids from Piptoporus betulinus. J Antibiot 2004; 57(11):755-758. doi: http://dx.doi.org/10.7164/antibiotics.57.755
  • 18. Schlegel B, Luhmann U, Hartl A, Grafe U. Piptamine, a new antibiotic produced by Piptoporus betulinus Lu 9-1. J Antibiot 2000; 53(9):973-974.
  • 19. Standish LJ, Wenner CA, Sweet ES, Bridge C, Nelson A, Martzen M et al. Trametes versicolor mushroom immune therapy in breast cancer. J Soc Integr Oncol 2008; 6(3):122–128.
  • 20. Hybelbauerová S, Sejbal J, Dračínský M, Hahnová A, Koutek B. Chemical constituents of Stereum subtomentosum and two other birch-associated Basidiomycetes: an interspecies comparative study. Chem Biodivers 2008; 5(5):743–750. doi: http://dx.doi.org/10.1002/cbdv.200890070
  • 21. Reis FS, Pereira E, Barros L, Sousa MJ, Martins A, Ferreira IC. Biomolecule profiles in inedible wild mushrooms with antioxidant value. Molecules 2011; 16:4328-4338. doi: http://dx.doi.org/10.3390/molecules16064328
  • 22. Wiater A, Paduch R, Pleszczyńska M, Próchniak K, Choma A, Kandefer-Szerszeń M et al. α-(1→3)-D-Glucans from fruiting bodies of selected macromycetes fungi and the biological activity of their carboxymethylated products. Biotechnol Lett 2011; 33:787-795. doi: http://dx.doi.org/10.1007/s10529-010-0502-7
  • 23. Yusoo S, Yutaka T and Minoru T. Chemical constituents of Inonotus obliquus IV. - triterpene and steroids from cultured mycelia. Eurasian J For Res 2001; 2:27-30.
  • 24. Kahlos K, Kangas L, Hiltunen R. Ergosterol peroxide, an active compound from Inonotus radiatus. Planta Med 1989; 55:389-90.
  • 25. Liu C, Zhao C, Pan HH, Kang J, Yu XT, Wang HQ et al. Chemical constituents from Inonotus obliquus and their biological activities. J Nat Prod 2014; 77:35-41.
  • 26. Knox RJ, Lydall DA, Friedlos F, Basham C, Rawlings CJ, Roberts JJ. The Walker 256 carcinoma: a cell type inherently sensitive only to those difunctional agents that can form DNA interstrand crosslinks. Mutation Research/DNA Repair, 1991; 255(3):227-240. doi: http://dx.doi.org/10.1016/0921-8777(91)90026-L
  • 27. Levenson AS, Jordan VC. MCF-7: The first hormone-responsive breast cancer cell line. Cancer Res 1997; 57:3071-3078.
  • 28. Petrova RD, Reznick AZ, Wasser SP, Denchev CM, Nevo E, Mahajna J. Fungal metabolites modulating NF-κB activity: An approach to cancer therapy and chemoprevention (Review). Oncol Rep 2008; 19:299-308.
  • 29. Shibnev VA, Mishin DV, Garaev TM, Finogenova NP, Botikov AG, Deryabin PG. Antiviral activity of Inonotus obliquus fungus extract towards infection caused by hepatitis C virus in cell cultures. B Exp Biol Med+ 2011; 151(5):612-4. doi: http://dx.doi.org/10.1007/s10517-011-1395-8
  • 30. Sun JE, Ao ZH, Lu ZM, Xu HY, Zhang XM, Dou WF et al. Antihyperglycemic and antilipidperoxidative effects of dry matter of culture broth of Inonotus obliquus in submerged culture on normal and alloxandiabetes mice. J Ethnopharmacol 2008; 118:7-13. doi: http://dx.doi.org/10.1016/j.jep.2008.02.030
  • 31. Lee JH, Hyun CK. Insulin-sensitizing and beneficial lipid-metabolic effects of the water-soluble melanin complex extracted from Inonotus obliquus. Phytother Res 2014; 28:1320-1328. doi: http://dx.doi.org/10.1002/ptr.5131
  • 32. Olennikov DN, Agafonova SV, Penzina TA, Borovskii gb . fatty acid composition of fourteen wooddecaying Basidiomycete species growing in permafrost conditions. Rec Nat Prod 2014; 8(2):184-188.
  • 33. Lee IK, Yun BS, Cho SM, Kim WG, Kim JP, Ryoo IJ. Betulinans A and B, two benzoquinone compounds from Lenzites betulina. J Nat Prod 1996; 59:1090-1092. doi: http://dx.doi.org/10.1021/np960253z
  • 34. El-Elimat T, Figueroa M, Raja HA, Graf TN, Adcock AF, Kroll DJ, et al. Benzoquinones and terphenyl compounds as phosphodiesterase-4b inhibitors from a fungus of the order chaetothyriales (MSX 47445). J Nat Prod 2013; 76:382-387. doi: http://dx.doi.org/10.1021/np300749w
  • 35. Liu K, Wang JL, Gong WZ, Xiao X, Wang Q. Antioxidant activities in vitro of ethanol extract and fractions from mushroom, Lenzites betulina. J Food Biochem 2013; 37:687-693. doi: http://dx.doi.org/10.1111/j.1745-4514.2012.00666.x
  • 36. Gan X, Jiang W, Wang W, Hu L. An Approach to 3,6-disubstituted 2,5-dioxybenzoquinones via two sequential Suzuki Couplings. Three-step synthesis of leucomelone. Org Lett 2009; 11:589-592. doi: http://dx.doi.org/10.1021/ol802645f
  • 37. Zjawiony JK. Biologically active compounds from Aphyllophorales (Polypore) fungi. J Nat Prod 2004; 67(2):300-310. doi: http://dx.doi.org/10.1021/np030372w
  • 38. Kun L, Jun-Li W, Hai-Bo W, Qian W, Kai-Li B, Yun-Fei S. A New pyranone from Lenzites betulina. Chem Nat Compd 2012; 48(5):780-781. doi: http://dx.doi.org/10.1007/s10600-012-0380-4
  • 39. Hussin FRM, Vitor RJS, Joaquin JAO, Clerigo MM, Paano AMC. Anti-hyperglycemic effects of aqueous Lenzites betulina extracts from the Philippines on the blood glucose levels of the ICR mice (Mus musculus). Asian Pac J Trop Biomed 2016; 6(2):155–158. doi: http://dx.doi.org/10.1016/j.apjtb.2015.04.013
  • 40. Fakoya S, Oloketuyi SF. Antimicrobial efficacy and phytochemical screening of mushrooms, Lenzites betulinus, and Coriolopsis gallica extracts. TAF Prev Med Bull 2012; 11(6): 695-8. doi: http://dx.doi.org/10.5455/pmb.1-1327262044
  • 41. Oyetayo OV. Free radical scavenging and antimicrobial properties of extracts of wild mushrooms. Braz J Microbiol 2009; 40:380-386, doi: http://dx.doi.org/10.1590/S1517-838220090002000031
  • 42. Oyetayo OV, Nieto- Camacho A, Ramírez-Apana TM, Baldomero RE, Jimenez M. Total phenol, antioxidant and cytotoxic properties of wild macrofungi collected from Akure Southwest Nigeria. Jordan J Biol Sci 2013; 6(2):105-110, doi: http://dx.doi.org/10.12816/0000267
  • 43. Sundaramoorthi C, Jayaraman R, Vipul JR, Dhariya KK. Evaluation of hepatoprotective effect of Lenzitus betulina against paracetamol induced hepatic damage in rats. Jour Harm Res Pharm 2015; 4(4):296-304.
  • 44. Snowarski M. Atlas grzybów Polski 2013; www.grzyby.pl (date of entry: 04. 2015).
  • 45. Zang Y, Xiong J, Zhai W, Cao L, Zhang S, Tang Y et al. Fomentarols A–D, sterols from the polypore macrofungus Fomes fomentarius. Phytochemistry 2013; 92:137-145. doi: http://dx.doi.org/10.1016/j.phytochem.2013.05.003
  • 46. Aoki M, Tan M, Fukushima A, Hieda T, Kubo S, Takabayashi M et al. Antiviral substances with systemic effects produced by Basidiomycetes such as Fomes fomentarius. Biosci Biotech Bioch 1993; 57(2):278-282. doi: http://dx.doi.org/10.1271/bbb.57.278
  • 47. Krupodorova T, Rybalko S, Barshteyn V. Antiviral activity of Basidiomycete mycelia against influenza type A (serotype H1N1) and herpes simplex virus type 2 in cell culture. Virologica Sinica, 2014; 29(5):284-290. doi: http://dx.doi.org/10.1007/s12250-014-3486-y
  • 48. Seniuk OF, Gorovoj LF, Beketova GV, Savichuk HO, Rytik PG, Kucherov II et al. Anti-infective properties of the melanin-glucan complex obtained from medicinal tinder bracket mushroom, Fomes fomentarius (L.) Fr. (Aphyllophoromycetideae). Int J Med Mushrooms 2011; 13(1):7-18.
  • 49. Valisolalao J, Luu B. Ourisson, G. Steroides cytotoxiques de Polyporus versicolor. Tetrahedron 1983; 39:2779-2785. doi: http://dx.doi.org/10.1016/S0040-4020(01)82446-7
  • 50. Kuan YC, Wu YJ, Hung CL, Sheu F. Trametes versicolor protein YZP activates regulatory b lymphocytes – gene identification through de novo assembly and function analysis in a murine acute colitis model. PLoS ONE 2013; 8(9): e72422. doi: http://dx.doi.org/10.1371/journal.pone.0072422
  • 51. Torkelson CJ, Sweet E, Martzen MR, Sasagawa M, Wenner CA, Gay J et al. Phase 1 clinical trial of Trametes versicolor in women with breast cancer. International Scholarly Research Network ISRN Oncology 2012; 251632, 7 pages. doi: http://dx.doi.org/10.5402/2012/251632

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-d994fd1c-084d-4394-bef3-fca13191b6d3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.