PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 37 | 04 |

Tytuł artykułu

Isolation and in silico characterization of a shikimate kinase from Cassia obtusifolia

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Shikimate kinase (SK), an indispensable enzyme in shikimate pathway, catalyzes the transfer of a phosphate from Adenosine triphosphate (ATP) to 3-hydroxyl of shikimate to form shikimate 3-phosphate. There are many active metabolites from shikimate pathway in Cassia obtusifolia. A new member of SKs from C. obtusifolia named CoSK was cloned and subjected to in silico characterization analysis. The constructed 3D structure of CoSK adopted α-β-α fold with five parallel β-sheets flanked by 12 α-helices. CoSK was shown to possess the potential ability to catalyze the phosphorylation of shikimate. Residues Lys118 and Arg223 binding with ATP and residue Asp137 binding with shikimate might be essential for phosphorylating shikimate. These results will provide useful information concerning the catalytic and physiology mechanism of SK in plants.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

37

Numer

04

Opis fizyczny

Article: 85 [12 p.], fig.,ref.

Twórcy

autor
  • School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
autor
  • College of Life Sciences, Zhejang University, Hongzhou 310058, China
autor
  • School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
autor
  • School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
autor
  • School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
autor
  • School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
autor
  • School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
autor
  • School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China

Bibliografia

  • Arcuri HA, Zafalon GFD, Marucci EA, Bonalumi CE, da Silveira NJF, Machado JM, de Azevedo Jr WF, Palma MS (2010) SKPDB: a structural database of shikimate pathway enzymes.BMC Bioinformatics 11:12–13
  • Arfken G, Romain J (1967) Mathematical methods for physicists. Phys Today 20:79
  • Armengot L, Marqués-Bueno MM, Soria-Garcia A, Müller M, Munné-Bosch S, Martínez MC (2014) Functional interplay between protein kinase CK2 and salicylic acid sustains PIN transcriptional expression and root development. Plant J 78:411–423
  • Artimo P, Jonnalagedda M, Arnold K, Baratin D, Csardi G, de Castro E, Duvaud S, Flegel V, Fortier A, Gasteiger E, Grosdidier A, Hernandez C, Ioannidis V, Kuznetsov D, Liechti R, Moretti S, Mostaguir K, Redaschi N, Rossier G, Xenarios I, Stockinger H (2012) ExPASy: SIB bioinformatics resource portal. Nucleic Acids Res 40:W597–W603
  • Azevedo LS, Moraes FP, Xavier MM, Pantoja EO, Villavicencio B, Finck JA, Proenca AM, Rocha KB, De Azevedo Jr WF (2012) Recent progress of molecular docking simulations applied to development of drugs. Curr Bioinformatics 7:352–365
  • Brooks BR, Bruccoleri RE, Olafson BD, Swaminathan S, Karplus M (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4:187–217
  • Cerasoli E, Kelly SM, Coggins JR, Lapthorn AJ, Clarke DT, Price NC (2003) Effects of salts on the function and conformational stability of shikimate kinase. BBA Proteins Proteom 1648:43–54
  • Chen YJ, Yu P, Luo JC, Jiang Y (2003) Secreted protein prediction system combining CJ-SPHMM, TMHMM, and PSORT. Mamm Genome 14:859–865
  • Colovos C, Yeates TO (1993) Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci 2:1511–1519
  • Coracini JD, De Azevedo Jr WF (2014) Shikimate kinase, a protein target for drug design. Curr Med Chem 21:592–604
  • Dalton JA, Jackson RM (2010) Homology-modelling protein-ligand interactions: allowing for ligand-induced conformational change. J Mol Biol 399:645–661
  • De Azevedo Jr WF (2011) Molecular dynamics simulations of protein targets identified in Mycobacterium tuberculosis. Curr Med Chem 18:1353–1366
  • De Azevedo Jr WF, Canduri F, De Oliveira JS, Basso LA, Palma MS, Pereihenrra JH, Santos DS (2002) Molecular model of shikimate kinase from Mycobacterium tuberculosis. Biochem Biophys Res Commun 295:142–148
  • Draths KM, Knop DR, Frost JW (1999) Shikimic acid and quinic acid: replacing isolation from plant sources with recombinant microbial biocatalysis. J Am Chem Soc 121:1603–1604
  • Eisenberg D, Lüthy R, Bowie JU (1997) VERIFY3D: assessment of protein models with three-dimensional profiles. Meth Enzymol 277:396–404
  • Elumalai P, Liu H-L (2011) Homology modeling and dynamics study of aureusidin synthase—an important enzyme in aurone biosynthesis of snapdragon flower. Int J Biol Macromol 49:134–142
  • Emanuelsson O, Brunak S, von Heijne G, Nielsen H (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat Prot 2:953–971
  • Fletcher R, Reeves CM (1964) Function minimization by conjugate gradients. Comput J 7:149–154
  • Fucile G, Falconer S, Christendat D (2008) Evolutionary diversification of plant shikimate kinase gene duplicates. PLoS Genet 4:1–10
  • Fucile G, Garcia C, Carlsson J, Sunnerhagen M, Christendat D (2011) Structural and biochemical investigation of two Arabidopsis shikimate kinases: the heat-inducible isoform is thermostable. Protein Sci 20:1125–1136
  • Furumoto T, Hoshikuma A (2011) Biosynthetic origin of 2-geranyl-1,4-naphthoquinone and its related anthraquinone in a Sesamum indicum hairy root culture. Phytochemistry 72:871–874
  • Hartmann MD, Bourenkov GP, Oberschall A, Strizhov N, Bartunik HD (2006) Mechanism of phosphoryl transfer catalyzed by shikimate kinase from Mycobacterium tuberculosis. J Mol Biol 364:411–423
  • Heberlé G, De Azevedo Jr WF (2011) Bio-inspired algorithms applied to molecular docking simulations. Curr Med Chem 18:1339–1352
  • Herrmann KM (1995) The shikimate pathway: early steps in the biosynthesis of aromatic compounds. Plant Cell 7:907–919
  • Herrmann KM, Weaver LM (1999) The shikimate pathway. Ann Rev Plant Biol 50:473–503
  • Johansson L, Lindskog L, Silfversparre G, Cimander C, Nielsen KF, Lidén G (2005) Shikimic acid production by a modified strain ofE. coli (W3110.shik1) under phosphate-limited and carbonlimited conditions (pn/a). Biotechnol Bioeng 92:541–552
  • Kasai K, Kanno T, Akita M, Ikejiri-Kanno Y, Wakasa K, Tozawa Y (2005) Identification of three shikimate kinase genes in rice: characterization of their differential expression during panicle development and of the enzymatic activities of the encoded proteins. Planta 222:438–447
  • Kim S-J, Kim K-W, Kim D-S, Kim M-C, Jeon Y-D, Kim S-G, Jung H-J, Jang H-J, Lee B-C, Chung W-S, Hong S-H, Chung S-H, Um J-Y (2011) The protective effect of Cassia obtusifolia on DSSinduced colitis. Am J Chin Med 39:565–577
  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and clustal X version 2.0. Bioinformatics 23:2947–2948
  • Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst 26:283–291
  • Liu Q, Li Y, Wu Y, Yan HG (2000) H-1, C-13 and N-15 resonance assignments of Aquifex aeolicus shikimate kinase in complex with the substrate shikimate. J Biomol NMR 17:277–278
  • Liu Z, Song T, Zhu Q, Wang W, Zhou J, Liao H (2014) De novo assembly and analysis of Cassia obtusifolia seed transcriptome to identify genes involved in the biosynthesis of active metabolites. Biosci Biotech Bioch 78:791–799
  • Maeda H, Dudareva N (2012) The shikimate pathway and aromatic amino acid biosynthesis in plants. Ann Rev Plant Biol 63:73–105
  • Marchler-Bauer A, Zheng C, Chitsaz F, Derbyshire MK, Geer LY, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Lanczycki CJ, Lu F, Lu S, Marchler GH, Song JS, Thanki N, Yamashita RA, Zhang D, Bryant SH (2013) CDD: conserved domains and protein three-dimensional structure. Nucleic Acids Res 41:D348–D352
  • Pereira JH, De Oliveira JS, Canduri F, Dias MVB, Palma MS, Basso LA, Santos DS, De Azevedo Jr WF (2004) Structure of shikimate kinase from Mycobacterium tuberculosis reveals the binding of shikimic acid. Acta Crystallogr D 60:2310–2319
  • Rose PW, Beran B, Bi C, Bluhm WF, Dimitropoulos D, Goodsell DS, Prlić A, Quesada M, Quinn GB, Westbrook JD (2011) The RCSB Protein Data Bank: redesigned web site and web services. Nucleic Acids Res 39:D392–D401
  • Sali A (1995) Comparative protein modeling by satisfaction of spatial restraints. Mol Med Today 1:270–277
  • Shan S, Xia L, Ding X, Zhang Y, Hu S, Sun Y, Yu Z, Han L (2011) Homology modeling of Cry1Ac toxin-binding alkaline phosphatase receptor from Helicoverpa armigera and its functional interpretation. Chin J Chem 29:427–432
  • Sharma R, Panigrahi P, Suresh CG (2014) In-silico analysis of binding site features and substrate selectivity in plant flavonoid-3-O glycosyltransferases (F3GT) through molecular modeling, docking and dynamics simulation studies. PLoS One 9:e92636
  • Smith AA, Caruso A (2013) In silico characterization and homology modeling of a cyanobacterial phosphoenolpyruvate carboxykinase enzyme. Struct Biol. doi:10.1155/2013/370820
  • Sob SVT, Wabo HK, Tchinda AT, Tane P, Ngadjui BT, Ye Y (2010) Anthraquinones, sterols, triterpenoids and xanthones from Cassia obtusifolia. Biochem Sys Ecol 38:342–345
  • Stecher G, Liu L, Sanderford M, Peterson D, Tamura K, Kumar S (2014) MEGA-MD: molecular evolutionary genetics analysis software with mutational diagnosis of amino acid variation. Bioinformatics 30:1305–1307
  • Van Gunsteren W, Berendsen H (1977) Algorithms for macromolecular dynamics and constraint dynamics. Mol Phys 34:1311–1327
  • Vianna CP, De Azevedo Jr WF (2012) Identification of new potential Mycobacterium tuberculosis shikimate kinase inhibitors through molecular docking simulations. J Mol Model 18:755–764
  • Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35:407–410
  • Wu G, Robertson DH, Brooks CL, Vieth M (2003) Detailed analysis of grid-based molecular docking: a case study of CDOCKER—a CHARMm-based MD docking algorithm. J Comput Chem 24:1549–1562
  • Zhu Q, Zhu M, Zou J, Feng P, Fan G, Liu Z, Wang W (2013) Molecular modeling and docking of mannose-binding lectin from Lycoris radiata. Chem Res Chin Univ 29:1153–1158
  • Zhu Q, Zhu M, Fan G, Zou J, Feng P, Liu Z, Wang W (2014a) Molecular modeling and docking studies of 30-hydroxy-Nmethylcoclaurine 40-O-methyltransferase from Coptis chinensis. Bull Korean Chem Soc 35:63
  • Zhu Q, Zou J, Zhu M, Liu Z, Feng P, Fan G, Wang W, Liao H (2014b) In silico analysis on structure and DNA binding mode of AtNAC1, a NAC transcription factor from Arabidopsis thaliana. J Mol Model 20:1–10

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-d9438b16-72bd-4907-8878-1f9eec885db4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.