PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | 27 | 1 |

Tytuł artykułu

Prediction of welding-induced distortion of fixed plate edge using design of experiment approach

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The paper presents the results of experimental studies on distortion of the fixed plate edge due to formation of a butt joint. This is a hidden form of weld distortion present in structural nodes and identified at the ship hull pre-fabrication stages. The investigations were performed according to a design of experiment (DoE) approach in laboratory conditions resembling those encountered in the shipbuilding industry. The presented analysis includes the technological‒construction parameters influencing the evaluated distortion shape. The implemented method of experimental results evaluation allows the utilisation of the approximation dependence to predict the fixed plate edge distortion in large-scale steel structures

Słowa kluczowe

Wydawca

-

Rocznik

Tom

27

Numer

1

Opis fizyczny

p.134-142,fig.,ref.

Twórcy

autor
  • West Pomeranian University of Technology in Szczecin, al.Piastow 41, 71-065 Szczecin, Poland
autor
  • West Pomeranian University of Technology in Szczecin, al.Piastow 41, 71-065 Szczecin, Poland
autor
  • Polish Navy Academy, Smidowicza 69, 81-127 Gdynia, Poland

Bibliografia

  • 1. Adak M., Mandal N. R. (2010): Numerical and experimental study of mitigation of welding distortion. Applied Mathematical Modeling, 34, 134–158.
  • 2. Banaszek A., Łosiewicz Z., Jurczak W. (2018): Corrosion influence on safety of hydraulic pipelines installed on decks of contemporary product and chemical tankers. Polish Maritime Research, 2(98), 25, 71–77.
  • 3. Company Standard T081-02 (2001): Gas-shielded metal-arc welding, part II – Welding procedure specifications WPS, Szczecin Shipyard Inc. 2001.
  • 4. Company Standard: T100-01 (2001): Steel ship hull. The hull structure accuracy. Szczecin Shipyard Inc., 2001.
  • 5. Deng D., Zhou Y., Bi T., Liu X. (2013): Experimental and numerical investigations of welding distortion inducted by CO2 gas arc welding in thin-plate bead-on joints. Materials and Design, 52, 720–729.
  • 6. Depradeux L., Jullien J. F. (2004): Experimental and numerical simulation of thermomechanical phenomena during a TIG welding process. Journal for Physics. IV France, 120, 697–704.
  • 7. Draper N. R., Smith H. (1998): Applied regression analysis, John Wiley, New York.
  • 8. Goldak J. (1984): A new finite element model for weld mechanics. Metallurgical Transactions B, 15, 299–305.
  • 9. Goldak J., Oddy A., Gu M., Ma W., Mashaie A., Hughes E. (1992): Coupling heat transfer, microstructure evolution and thermal stress analysis in weld mechanics, Proc. of IUTAM Symp. on Mechanical Effects of Welding, Springer-Verlag, Berlin.
  • 10. Liang W., Deng D. (2018): Influences of heat input, welding sequence and external restraint on twisting distortion in an asymmetrical curved stiffened panel. Advances in Engineering Software, 115, 439–451.
  • 11. McPherson N. A., Galloway A. M., McGhie W. (2013): Thin plate buckling mitigation and reduction challenges for naval ships. Journal of Marine Engineering & Technology, 12(2), 3–10.
  • 12. Metschkow B., Graczyk T. (1997): Laser welded joints in shipbuilding. In: Graczyk T., Jastrzębski T., Brebbia C. A. (Eds.), 2nd Edition, Computational Mechanics Publications, Southampton & Boston, pp. 171–181.
  • 13. Michaleris P., Debiccari A. (1997): Prediction of welding distortion. Welding Journal, 76, 172–181.
  • 14. Montgomery D. C. (2001): Design and analysis of experiments, 5th Edition, John Wiley, New York.
  • 15. Myers R. H., Montgomery D. C., Anderson-Cook C. M. (2009): Response Surface Methodology: process and product optimization using designed experiments, John Wiley, New York.
  • 16. Okerblom N. O. (1958): The Calculations of Deformations of Welded Metal Structures, Her Majesty’s Stationery Office, London.
  • 17. Okerblom N. O. (1964): Technological and structural design of welded structures, Machinostroenie, Moscow 1964.
  • 18. Production Standard of the German Shipbuilding Industry (revised edition with the first edition – November 1974 and second edition – August 1977).
  • 19. Radaj D. (1992): Heat effects of welding, Springer-Verlag, Berlin.
  • 20. Remes H., Varsta P. (2010): Statistics of weld geometry for laser-hybrid welded joints and its application within notch stress approach. Welding in the World, 54(7), 189–207.
  • 21. Rosenthal D. (1941): Mathematical Theory of Heat Distribution during Welding and Cutting. Welding Journal, 20(5), 220–234.
  • 22. Rosenthal D. (1946): The Theory of Moving Sources of Heat and Its Application to Metal Treatments. Transactions of ASME, 43, 849–866.
  • 23. Rules for the classification and construction of sea-going ships, Part II Hull, Polish Register of Shipping, Gdańsk, January 2019.
  • 24. Rykalin N. N. (1951): Calculation of Thermal Processes during Welding, The Governmental Technical Science Publishing Firm for Machine Literature, Moscow.
  • 25. Shipbuilding and Repair Quality Standard IACS (1996): Part A. Shipbuilding and Repair Quality Standard for New Construction, Part B. Repair Quality Standard for Existing Ships, London.
  • 26. Ueda Y., Yamakawa T. (1971): Analysis of thermal elasticplastic stress and strain during welding. Trans. Japan Welding Soc., 2(2), 90–100.
  • 27. Urbański T. (2009): Method for prediction of welding deformations of hybrid node using experimental approach (in Polish). PhD dissertation, West Pomeranian University of Technology in Szczecin.
  • 28. Urbański T. (2015): Analysis of assembly suitability of the hybrid node based on weld distortion prediction models. Advances in Science and Technology Research Journal, 9(27), 28–34.
  • 29. Wang J., Yuan H., Ma N., Murakawa H. (2016): Recent research on welding distortion prediction in thin plate fabrication by means of elastic FE computation. Marine Structures, 47, 42–59.
  • 30. Wang J., Zhao Y., Zou J., Zhou H., Wu Z., Du S. (2017): Welding distortion prediction with elastic FE analysis and mitigation practice in fabrication of cantilever beam component of jack-up drilling rig. Ocean Engineering, 130, 25–39.
  • 31. Watanabe M., Satoh K. (1961): Effect of welding conditions on the shrinkage distortion in welded structures. Welding Journal, 40, 377–384.
  • 32. Westby O. (1968): Temperature distribution in the workpiece by welding. Doctoral Thesis, Technical University of Norway, Trondheim.
  • 33. Yang Y. P., Castner H., Dull R., Dydo J., Fanguy D. (2013): Uniform-panel weld shrinkage data model for neat construction ship design engineering. Journal of Ship Production and Design, 29(1), 1–16.
  • 34. Yang Y. P., Castner H., Dull R., Dydo J., Huang T. D., Fanguy D., Dlugokecki V., Hepinstall L. (2014): Complex-panel weld shrinkage data model for neat construction ship design engineering. Journal of Ship Production and Design, 30(1), 15–38.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-d8a32227-c193-4512-a5f8-859e8a0a5961
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.