PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 25 | 2 |

Tytuł artykułu

3D object shape reconstruction from underwater multibeam data and over ground LiDAR scanning

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The technologies of sonar and laser scanning are an efficient and widely used source of spatial information with regards to underwater and over ground environment respectively. The measurement data are usually available in the form of groups of separate points located irregularly in three-dimensional space, known as point clouds. This data model has known disadvantages, therefore in many applications a different form of representation, i.e. 3D surfaces composed of edges and facets, is preferred with respect to the terrain or seabed surface relief as well as various objects shape. In the paper, the authors propose a new approach to 3D shape reconstruction from both multibeam and LiDAR measurements. It is based on a multiple-step and to some extent adaptive process, in which the chosen set and sequence of particular stages may depend on a current type and characteristic features of the processed data. The processing scheme includes: 1) pre-processing which may include noise reduction, rasterization and pre-classification, 2) detection and separation of objects for dedicated processing (e.g. steep walls, masts), and 3) surface reconstruction in 3D by point cloud triangulation and with the aid of several dedicated procedures. The benefits of using the proposed methods, including algorithms for detecting various features and improving the regularity of the data structure, are presented and discussed. Several different shape reconstruction algorithms were tested in combination with the proposed data processing methods and the strengths and weaknesses of each algorithm were highlighted

Słowa kluczowe

Wydawca

-

Rocznik

Tom

25

Numer

2

Opis fizyczny

p.47-56,fig.,ref.

Twórcy

autor
  • Department of Geoinformatics, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
  • Department of Geoinformatics, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland

Bibliografia

  • 1. Amenta N., Choi S., Kolluri R. K., The Power Crust, Proceedings of the sixth ACM symposium on Solid modeling and applications, 2001, pp. 249-266.
  • 2. Bernardini F., Mittleman J., Ftushmeier H., Silva C., Taubin G., The Ball-Pivoting Algorithm for Surface Reconstruction, IEEE Transactions on Visualization and Computer Graphics, vol. 5, No. 4, 1999, pp. 349-359.
  • 3. Chybicki, A., Kulawiak, M., Lubniewski, Z., Dabrowski, J., Luba, M., Moszynski, M. and Stepnowski, A., 2008, May. GIS for remote sensing, analysis and visualisation of marine pollution and other marine ecosystem components. In Information Technology, 2008. IT 2008. 1st International Conference on (pp. 1-4). IEEE. DOI: 10.1109/ INFTECH.2008.4621628
  • 4. Kulawiak, M. and Kulawiak, M., 2017. Application of Web-GIS for Dissemination and 3D Visualization of Large-Volume LiDAR Data. In The Rise of Big Spatial Data (pp. 1-12). Springer International Publishing. DOI: 10.1007/978-3-319-45123-7_1
  • 5. Campos R., Garcia R., Nicosevici T., Surface reconstruction methods for the recovery of 3D models from underwater interest areas, OCEANS, 2011 IEEE - Spain, 2011.
  • 6. Caris HIPS and SIPS, http://www.caris.com/products/ hips-sips/ (accessed on 03.11.2017)
  • 7. Cheng L., Tong L., Chen Y., Zhang W., Shan J., Liu Y., Li M., Integration of LiDAR data and optical multi-view images for 3D reconstruction of building roofs. Optics and Lasers in Engineering, 51(4), 2013, pp. 493-502.
  • 8. Cohen, D. and Gotsman, C., 1994. Photorealistic terrain imaging and flight simulation. IEEE Computer Graphics and Applications, 14(2), pp.10-12.
  • 9. Henn A., Gröger G., Stroh V., Plümer L., Model driven reconstruction of roofs from sparse LIDAR point clouds. ISPRS Journal of photogrammetry and remote sensing, 76, 2013, pp. 17-29.
  • 10. Hurtós N., Cufí X., Salvi J., Calibration of optical camera coupled to acoustic multibeam for underwater 3D scene reconstruction, OCEANS 2010 IEEE-Sydney, 2010, pp. 1-7.
  • 11. Kada M., McKinley L., 3D building reconstruction from LiDAR based on a cell decomposition approach. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci, 38, W4, 2009.
  • 12. Kazhdan M., Bolitho M., Hoppe H., Poisson Surface Reconstruction, Eurographics Symposium on Geometry Processing, 2006, pp. 61-70.
  • 13. Kim K., Shan J., Building roof modeling from airborne laser scanning data based on level set approach. ISPRS Journal of Photogrammetry and Remote Sensing, 66(4), 2011, pp. 484-497.
  • 14. Kulawiak M., Łubniewski Z., Reconstruction Methods for 3D Underwater Objects Using Point Cloud Data, Hydroacoustics vol. 18, 2015, pp. 95-102.
  • 15. Kulawiak M., Łubniewski Z., Processing of LiDAR and Multibeam Sonar Point Cloud Data for 3D Surface and Object Shape Reconstruction, Baltic Geodetic Congress (BGC Geomatics), Gdańsk, 2016. DOI: 10.1109/BGC. Geomatics.2016.41
  • 16. Lu D., Li H., Wei Y., Shen T., An Improved Merging Algorithm for Delaunay Meshing on 3D Visualization Multibeam Bathymetric Data, Information and Automation (ICIA), 2010 IEEE International Conference on. IEEE, 2010, pp. 1171-1176.
  • 17. Lu Y., Oshima M., On the 3-D Reconstruction of Seabed Using Multiple Sidescan Sonar Images, IAPR Workshop on Machine Vision Applications, 2002, Nara, Japan.
  • 18. Nikic D., Wu J., Pauca P., Plemmons R., Zhang Q., A novel approach to environment reconstruction in lidar and hsi datasets, Advanced Maui Optical and Space Surveillance Technologies Conference Vol. 1, 2012, p. 81.
  • 19. QINSy Knowledge Base, https://confluence.qps.nl/display/ KBE/QINSy+Knowledge+Base (accessed on 10.02.2017)
  • 20. Rottensteiner F., Automatic generation of high-quality building models from lidar data, IEEE Computer Graphics and Applications 23.6, 2003, pp. 42-50.
  • 21. Seafloor Information System SIS Operator Manual, Release 3.6, Kongsberg Maritime AS, 2009
  • 22. Tse R. O. C., Gold C. M., Kidner D. B., Building reconstruction using LIDAR data, Proceedings 4th ISPRS Workshop on Dynamic and Multi-dimensional GIS, 2005.
  • 23. Tsai V. J. D., Delaunay triangulations in TIN creation: an overview and a linear-time algorithm, International Journal of Geographical Information Systems, vol. 7 iss. 6, 1993, pp. 501-524, DOI 10.1080/02693799308901979.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-d82f5d95-6a6b-4b6b-a1ca-a20868efef5f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.