PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 68 | 4 |

Tytuł artykułu

Emulsifying properties of dried soy-whey, dried tofu-whey, and their isolated proteins

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
This paper focuses on the comparative study of emulsifying properties of dried tofu-whey, dried soy-whey and their isolated proteins. Oil-in-water emulsions were prepared at equivalent protein concentration (0.1, 0.5 and 1.0 g/100 mL), using sunflower oil as lipid phase (oil mass fraction = 0.33). Tofu-whey and soy-whey were dehydrated by freeze-drying (LTW and LSW, respectively) or thermal-drying (DTW and DSW, respectively). Moreover, a heated LSW sample in anhydrous condition (h-LSW) was included. The emulsion formation and stability at rest was evaluated using a vertical scan analyzer, according to multiple light scattering theory, particle size and oiling off measurements. Even though the stability to gravitational separation and coalescence increased with increasing protein concentration, freeze-dried whey samples exhibited a higher ability to form and stabilize emulsions respect to that of thermally-dried ones, especially for those obtained from soy-whey. Moreover, h-LSW emulsions were more stable than that of LSW sample presumably due to protein glycosylation. The global emulsion stability decreased in the order: LTW>DTW>h-LSW>LSW>DSW. Moreover, at equivalent protein concentration in the continuous phase, the isolation of proteins from lyophilized whey-samples by treatment with cold acetone (LTW-P, LSW-P and h-LSW-P, respectively) improved their emulsifying properties. Again, this improvement was more pronounced for samples obtained from soy-whey, probably due to partial protein denaturation associated to treatment with the organic solvent. In conclusion, this paper should be considered as basis for further studies concerned with the potential application of soy-whey and tofu-whey proteins as emulsifi ers in different systems.

Wydawca

-

Rocznik

Tom

68

Numer

4

Opis fizyczny

p.347-358,fig.,ref.

Twórcy

autor
  • Universidad Nacional de La Plata, Facultad de Ciencias Exactas. Calle 47 (s/n) y 115 (1900), La Plata, Provincia de Buenos Aires, Argentina
autor
  • Laboratorio de Investigacion en Funcionalidad y Tecnologia de Alimentos (LIFTA), Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes, Pabellon Dra. Maria Cristina Taira, Roque Saenz Pena 352 (B1876BXD), Bernal, Provincia de Buenos Aires, Argentina
  • Laboratorio de Investigacion en Funcionalidad y Tecnologia de Alimentos (LIFTA), Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes, Pabellon Dra.Maria Cristina Taira, Roque Saenz Pena 352 (B1876BXD), Bernal, Provincia de Buenos Aires, Argentina
  • Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Buenos Aires, Argentina
autor
  • Laboratorio de Investigacion en Funcionalidad y Tecnologia de Alimentos (LIFTA), Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes, Pabellon Dra.Maria Cristina Taira, Roque Saenz Pena 352 (B1876BXD), Bernal, Provincia de Buenos Aires, Argentina
  • Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Buenos Aires, Argentina

Bibliografia

  • 1. AOAC. Official Methods of Analysis of AOAC International. Sixteen Edition, 3rd Revision, Volume II., 1997, AOAC International, Gaithersburg, Maryland, USA.
  • 2. Benedetti S., Prudêncio E.S., Nunes G.L., Guizoni K., Fogaça L.R., Petrus J.C.C., Antioxidant properties of tofu whey concentrate by freeze concentration and nanofiltration processes. J. Food Eng., 2015, 160, 49–55.
  • 3. Chen Y., Xu Z., Zhang C., Kong X., Hua Y., Heat-induced inactivation mechanisms of Kunitz trypsin inhibitor and BowmanBirk trypsin inhibitor in soymilk processing. Food Chem., 2014, 154, 108–116.
  • 4. Huang H., Kwok K-C., Liang H.H., Inhibitory activity and conformation changes of soybean trypsin inhibitors induced by ultrasound. Ultrason. Sonochem., 2008, 15, 724–730.
  • 5. Jafari S.M., Assadpoor E., He Y., Bhandari B., Re-coalescence of emulsion droplets during high-energy emulsifi cation. Food Hydrocolloid., 2008, 22, 1191–1202.
  • 6. Kao F.J., Su N. W., Lee M.S., Effect of calcium concentration in soymilk on the microstructure of firm tofu and the protein constitutions in tofu whey. J. Agric. Food Chem., 2003, 51, 6211–6216.
  • 7. Kasran M., Cui S.W., Goff H.D., Emulsifying properties of soy whey protein isolate-fenugreek gum conjugates in oil-in-water emulsion model system. Food Hydrocolloid., 2013, 30, 691–697.
  • 8. Lajolo F.M., Genovese M.I., Nutritional signifi cance of lectins and enzyme inhibitors from legumes. J. Agric. Food Chem., 2002, 50, 6592–6598.
  • 9. Li R., Wu Z., Wang Y., Liu W., Pilot study of recovery of whey soy proteins from soy whey wastewater using batch foam fractionation. J. Food Eng., 2014, 142, 201–209.
  • 10. Liu W., Zhang H.X., Wu Z.L., Wang Y.J., Wang L.J., Recovery of isofl avones aglycones from soy whey wastewater using foam fractionation and acidic hydrolysis. J. Agric. Food Chem., 2013, 61, 7366–7372.
  • 11. Marshall M.R., Ash analysis. 2009, in: Food Analysis. Fourth Edition (ed. S. Nielsen). Springer, New York, pp. 105–116.
  • 12. Matemu A.O., Kayahara H., Murasawa H., Nakamura S., Importance of size and charge of carbohydrate chains in the preparation of functional glycoproteins with excellent emulsifying properties from tofu whey. Food Chem., 2009, 114, 1328–1334.
  • 13. McClements D.J., Protein-stabilized emulsions. Curr. Opin. Colloid Int. Sci., 2004, 9, 305–313.
  • 14. McClements D.J., Critical reviews of techniques and methodologies for characterization of emulsion stability. Crit. Rev. Food Sci. Nutr., 2007, 47, 611–649.
  • 15. Meng S., Chang S., Gillen A.M., Zhang Y., Protein and quality analyses of accessions of USDA soybean germplasm collection for tofu production. Food Chem., 2016, 213, 31–39.
  • 16. Mengual O, Meunier G., Cayré I., Puech K., Snabre P., Turbiscan MA 2000: multiple light scattering measurements for concentrated emulsion and suspension instability analysis. Talanta, 1999, 50, 445–456.
  • 17. Oliver C.M., Melton L.D., Stanley R.A., Creating proteins with novel functionality via the Maillard reaction. A review. Crit. Rev. Food Sci. Nutr., 2006, 46, 337–350.
  • 18. Palanuwech J., Potineni R., Roberts R.F., Coupland J.N., A method to determine free fat in emulsions. Food Hydrocolloid., 2003, 17, 55–62.
  • 19. Palazolo G.G., Sobral P.A., Wagner J.R., Dehydrated tofu whey as cryoprotectant in protein-stabilized oil-in-water emulsions. LWT-Food Sci. Technol., 2013, 50, 773–781.
  • 20. Palazolo G.G., Sorgentini D.A., Wagner J.R., Emulsifying properties and surface behavior of native and denatured whey soy proteins in comparison with other proteins. Creaming stability of oilin-water emulsions. J. Am. Oil Chem. Soc., 2004, 81, 625–632.
  • 21. Ray M., Rousseau D., Stabilization of oil-in-water emulsions using mixtures of denatured soy whey proteins and soluble soybean polysaccharides. Food Res. Int., 2013, 52, 298–307.
  • 22. Shen Y-R., Kuo M-I., Effects of different carrageenan types on the rheological and water holding properties of tofu. LWT-Food Sci. Technol., 2017, 78, 122–128.
  • 23. Singh A. Banerjee R., Peptide enriched functional food adjunct from soy whey: a statistical optimization study. Food Sci. Biotechnol., 2013, 22, 65–71.
  • 24. Sobral P.A., Palazolo G.G., Wagner J.R., Thermal behavior of soy protein fractions depending on their preparation methods, individual interactions, and storage conditions. J. Agric. Food Chem., 2010, 58, 10092–10100.
  • 25. Sobral P. A., Wagner J. R. Thermal properties of soybean whey and its proteins. 2007, in: Functional Properties of Food Com- ponents (ed. C.E. Lupano). Research Signpost, Kerala, India, pp. 57–76.
  • 26. Stoscheck C.M., Quantitation of protein. Method Enzymol., 1990, 182, 50–68.
  • 27. Thanasukarn P., Pongsawatmanit R., McClements D. J., Infl uence of the emulsifi er type on freeze-thaw stability of hydrogenated palm oil-in-water emulsions. Food Hydrocolloid., 2004, 18, 1033–10043.
  • 28. Vagadia B.H., Vanga S. K., Raghavan V., Inactivation method of soybean trypsin inhibitor. A review. Trends Food Sci. Technol., 2017, 64, 115–125.
  • 29. van Aken G.A. Coalescence mechanisms in protein-stabilized emulsions. 2004, in: Food Emulsions. Fourth edition revised and expanded (eds. S.E. Friberg, K. Larsson, J. Sjöblom). Marcel Dekker, Inc., New York, pp. 310–336.
  • 30. van der Ven C., Matser A.M., van den Berg R.M., Inactivation of soybean trypsin inhibitors and lipoxygenase by high-pressure processing. J. Agric. Food Chem., 2005, 53, 1087–1092.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-d7d2b23c-c55d-4ffd-9d3c-fe92f48dbda6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.