PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 64 | 1 |

Tytuł artykułu

Effects of novel processing techniques on glucosinolates and membrane associated myrosinases in broccoli

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
High pressure/high temperature (HP/HT) and pulsed electric field (PEF) treatment of food are among the novel processing techniques considered as alternatives to conventional thermal food processing. Introduction of new processing techniques with fast and gentle processing steps may reveal new possibilities for preservation of healthy bioactive compounds in processed food. However, effects on various food components due to autolysis and fast reactions prior to the applied HP/HT or PEF need to be considered as the total contribution of processing steps affects the obtained food quality. The present experiments were performed on broccoli (Brassica oleracea var. Italica) florets, purée and juice. Specific focus was given to effects of HP/HT and PEF processing on the content of glucosinolates and activities of myrosinase isoenzymes (EC.3.2.1.147) in the broccoli preparations. Certain conditions applied in HP/HT processing of broccoli florets were able to maintain a high level of intact glucosinolates. Treatment at 700 MPa and 20°C for 10 min was found to inactivate myrosinase activity, but also pressure treatments at 300 MPa and 20°C were able to maintain a high level of intact glucosinolates present in the untreated broccoli florets. PEF processing of broccoli purée and juice showed that the myrosinase activities resulted in nearly total glucosinolate transformations as result of autolysis during puréeing and juice making prior to the PEF processing. These data demonstrated that insight into potential effects on myrosinase activities from application of PEF processing implies specific focus on the sample steps preceding the PEF processing.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

64

Numer

1

Opis fizyczny

p.17-25,fig.,ref.

Twórcy

  • Department of Food Science, Biochemistry and Bioprocessing, Faculty of Sciences, University of Copenhagen, Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark
  • Department of Food Science, Biochemistry and Bioprocessing, Faculty of Sciences, University of Copenhagen, Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark
  • Department of Food Technology, University of Lleida, Av.Alcalde Rovira Roure 191, 25198, Lleida, Spain
  • Department of Food Technology, University of Lleida, Av.Alcalde Rovira Roure 191, 25198, Lleida, Spain
  • Department of Food Technology, University of Lleida, Av.Alcalde Rovira Roure 191, 25198, Lleida, Spain
autor
  • Department of Food Science, Biochemistry and Bioprocessing, Faculty of Sciences, University of Copenhagen, Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark
autor
  • Department of Food Science, Biochemistry and Bioprocessing, Faculty of Sciences, University of Copenhagen, Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark
  • Department of Food Science, Biochemistry and Bioprocessing, Faculty of Sciences, University of Copenhagen, Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark

Bibliografia

  • 1. Agerbirk N., Olsen C.E., Sørensen H., Initial and final products, nitriles, and ascorbigens produced in myrosinase-catalyzed hydrolysis of indole glucosinolates. J. Agric. Food Chem., 1998, 46, 1563–1571.
  • 2. Aguilo-Aguayo I., Andersen K.E., Frandsen H.B., Soliva-Fortuny R., Martin-Belloso O., Sørensen J.C., Sørensen H., Selective determinations of effect of HIPEF on enzymes oxidizing phenolics in tomatoes. Proceedings of EuroFoodChemXV Congress, Copenhagen 2009, II, pp. 244–245.
  • 3. Aguilo-Aguayo I., Soliva-Fortuny R., Martin-Belloso O., Comparative study on color, viscosity and related enzymes of tomato juice treated by high-intensity pulsed electric fields or heat. Eur. Food Res. Technol., 2008, 227, 599–606.
  • 4. Andersen K.E., Frandsen H.B., Jensen S.K., Bellostas N.M., Sørensen A.D., Sørensen J.C., Sørensen H., Glucosinolates in Brassica – Health risks, but also benefits. The Norwegian Academy of Science and Letters, 2010a, 104–124.
  • 5. Andersen K.E., Frandsen H.B., Sørensen H., Sørensen J.C., Sørensen S., On-line electrokinetic capillary chromatography determination of polyphenol oxidase activity and specificity in fruits and vegetables. Proceedings of EuroFood Chem XIV Conference, Paris, France, 2007, 2, 508–511.
  • 6. Andersen K.E., Frandsen H.B., Sørensen J.C., Sørensen H., Novel processing technologies; chemical reactions. Food Safety Mag., 2010b, February-March, 24–28.
  • 7. Andersson H.C., Brimer L., Cottrill B., Fink-Gremmels J., Jaroszewski J., Sørensen H., Glucosinolates as undesirable substances in animal feed. Scientific Opinion of the Panel on Contaminants in the Food Chain. The EFSA J., 2008, 590, 1–76.
  • 8. Bellostas N., Petersen I.L., Sørensen J.C., Sørensen H., A fast and gentle method for the isolation of myrosinase complexes from Brassicaceous seeds. J. Biochem. Biophys. Meth., 2008a, 70, 918–925.
  • 9. Bellostas N., Sørensen A.D., Sørensen J.C., Sørensen H., Genetic variation and metabolism of glucosinolates. Adv. Bot. Res.: Incorp. Adv. Plant Pathol., 2007, 45, 369–415.
  • 10. Bellostas N., Sørensen A.D., Sørensen J.C., Sørensen H., Fe2+- catalyzed formation of nitriles and thionamides from intact glucosinolates. J. Nat. Prod., 2008b, 71, 76–80.
  • 11. Bellostas N., Sørensen A.D., Sørensen J.C., Sørensen H., Type and concentration of redox reagents influencing nitrile formation upon myrosinase (Brassica carinata)-catalyzed hydrolysis of glucosibarin. J. Mol. Catal. B-Enzym., 2009, 57, 229–236.
  • 12. Bjerg B., Sørensen H., Isolation of intact glucosinolates by column chromatography and determination of their purity. 1987, in: World Crops: Production, Utilization, Description. Glucosinolates in Rapeseed: Analytical Aspects. (ed. G.Jablecki). Martinus Nijhoff Publishers, Kluwer Acedemic Publishers Groups, Dordrecht/ Boston/Lancaster, pp. 59–75.
  • 13. Bones A.M., Rossiter J.T., The enzymic and chemically induced decomposition of glucosinolates. Phytochemistry, 2006, 67, 1053–1067.
  • 14. Bonnesen C., Stephensen P.U., Andersen O., Sørensen H., Vang O., Modulation of cytochrome P-450 and glutathione S-transferase isoform expression in vivo by intact and degraded indolyl glucosinolates. Nutr. Canc. Int. J., 1999, 33 178–187.
  • 15. Burmeister W.P., Structural changes in a cryo-cooled protein crystal owing to radiation damage. Acta Crystallograph. Sect. D – Biol. Crystallogr., 2000, 56, 328–341.
  • 16. Buskov S., Hansen L.B., Olsen C.E., Sørensen J.C., Sørensen H., Sørensen S., Determination of ascorbigens in autolysates of various Brassica species using supercritical fluid chromatography. J. Agric. Food Chem., 2000a, 48, 2693–2701.
  • 17. Buskov S., Hasselstrøm J., Olsen C.E., Sørensen H., Sørensen J.C., Sørensen S., Supercritical fluid chromatography as a method of analysis for the determination of 4-hydroxybenzylglucosinolate degradation products. J. Biochem. Biophys. Meth., 2000b, 43, 157–174.
  • 18. Buskov S., Olsen C.E., Sørensen H., Sørensen S., Supercritical fluid chromatography as basis for identification and quantitative determination of indol-3-ylmethyl oligomers and ascorbigens. J. Biochem. Biophys. Meth., 2000c, 43, 175–195.
  • 19. Cano M.P., Hernandez A., DeAncos B., High pressure and temperature effects on enzyme inactivation in strawberry and orange products. J. Food Sci., 1997, 62, 85–88.
  • 20. Cartea M.E., Velasco P., Obregon S., Padilla G., De Haro A., Seasonal variation in glucosinolate content in Brassica oleracea crops grown in northwestern Spain. Phytochemistry, 2008, 69, 403–410.
  • 21. Ciska E., Martyniak-Przybyszewska B., Kozlowska H., Content of glucosinolates in cruciferous vegetables grown at the same site for two years under different climatic conditions. J. Agric. Food Chem., 2000, 48, 2862–2867.
  • 22. Conaway C.C., Getahun S.M., Liebes L.L., Pusateri D.J., Topham D.K.W., Botero-Omary M, Chung F.L., Disposition of glucosinolates and sulforaphane in humans after ingestion of steamed and fresh broccoli. Nutr. Canc. Int. J., 2000, 38, 168–178.
  • 23. Drewnowski A., Gomez-Carneros C., Bitter taste, phytonutrients, and the consumer: a review. Am. J. Clin. Nutr., 2000, 72, 1424–1435.
  • 24. Gachovska T., Cassada D., Subbiah J., Hanna M., Thippareddi H., Snow D., Enhanced anthocyanin extraction from red cabbage using pulsed electric field processing. J. Food Sci., 2010, 75, E323-E329.
  • 25. Gasper A.V., Al-janobi A., Smith J.A., Bacon J.R., Fortun P., Atherton C., Taylor M.A., Hawkey C.J., Barrett D.A., Mithen R.F., Glutathione S-transferase M1 polymorphism and metabolism of sulforaphane from standard and high-glucosinolate broccoli. Am. J. Clin. Nutr., 2005, 82, 1283–1291.
  • 26. Gonzalez M.E., Barrett D.M., Thermal, high pressure, and electric field processing effects on plant cell membrane integrity and relevance to fruit and vegetable quality. J. Food Sci., 2010, 75, R121-R130.
  • 27. Guderjan M., Elez-Martinez P., Knorr D., Application of pulsed electric fields at oil yield and content of functional food ingredients at the production of rapeseed oil. Innov. Food Sci. Emerg. Technol., 2007, 8, 55–62.
  • 28. Hansen M., Laustsen A.M., Olsen C.E., Poll L., Sørensen H., Chemical and sensory quality of broccoli (Brassica oleracea L. var italica). J. Food Qual., 1997, 20, 441–459.
  • 29. Hansen M., Møller P., Sørensen H., Detrejo M.C., Glucosinolates in broccoli stored under controlled-atmosphere. J. Am. Soc. Horticult. Sci., 1995, 120, 1069–1074.
  • 30. Herr I., Buchler M.W., Dietary constituents of broccoli and other cruciferous vegetables: Implications for prevention and therapy of cancer. Canc. Treat. Rev., 2010, 36, 377–383.
  • 31. Holst B., Williamson G., A critical review of the bioavailability of glucosinolates and related compounds. Nat. Prod. Rep., 2004, 21, 425–447.
  • 32. Howard L.A., Jeffery E.H., Wallig M.A., Klein B.P., Retention of phytochemicals in fresh and processed broccoli. J. Food Sci., 1997, 62, 1098–1101.
  • 33. Huang K., Tian H.P., Gai L., Wang J.P., A review of kinetic models for inactivating microorganisms and enzymes by pulsed electric field processing. J. Food Eng., 2012, 111, 191–207.
  • 34. Jeffery E.H., Araya M., Physiological effects of broccoli consumption. Phytochem. Rev., 2009, 8, 283–298.
  • 35. Jensen S.K., Michaelsen S., Kachlicki P., Sørensen H., 4-Hydroxyglucobrassicin and degradation products of glucosinolates in relation to unsolved problems with the quality of double low oilseed rape. Proceeding of International Rapeseed Conference, Saskatoon, Canada, 1991, V, 1359–1364.
  • 36. Jones R.B., Frisina C.L., Winkler S., Imsic M., Tomkins R.B., Cooking method significantly effects glucosinolate content and sulforaphane production in broccoli florets. Food Chem., 2010, 123, 237–242.
  • 37. Juge N., Mithen R.F., Traka M., Molecular basis for chemoprevention by sulforaphane: a comprehensive review. Cell. Molec. Life Sci., 2007, 64, 1105–1127.
  • 38. Kushad M.M., Brown A.F., Kurilich A.C., Juvik J.A., Klein B.P.,Wallig M.A., Jeffery E.H., Variation of glucosinolates in vegetable crops of Brassica oleracea. J. Agric. Food Chem., 1999, 47, 1541–1548.
  • 39. Loft S., Otte J., Poulsen H.E., Sørensen H., Influence of intact and myrosinase-treated indolyl glucosinolates on the metabolism invivo of metronidazole and antipyrine in the rat. Food Chem. Toxicol., 1992, 30, 927–935.
  • 40. Ludikhuyze L., Rodrigo L., Hendrickx M., The activity of myrosinase from broccoli (Brassica oleracea L. cv. Italica): Influence of intrinsic and extrinsic factors. J. Food Protect., 2000, 63, 400–403.
  • 41. Ludikhuyze L., Van Loey A., Indrawati, Smout C., Hendrickx M., Effects of combined pressure and temperature on enzymes related to quality of fruits and vegetables: From kinetic information to process engineering aspects. Crit. Rev. Food Sci. Nutr., 2003, 43, 527–586.
  • 42. Matusheski N.V., Jeffery E.H., Comparison of the bioactivity of two glucoraphanin hydrolysis products found in broccoli, sulforaphane and sulforaphane nitrile. J. Agric. Food Chem., 2001, 49, 5743–5749.
  • 43. Matusheski N.V., Juvik J.A., Jeffery E.H., Heating decreases epithiospecifier protein activity and increases sulforaphane formation in broccoli. Phytochemistry, 2004, 65, 1273–1281.
  • 44. Matusheski N.V., Swarup R., Juvik J.A., Mithen R., Bennett M., Jeffery E.H., Epithiospecifier protein from broccoli (Brassica oleracea L. ssp italica) inhibits formation of the anticancer agent sulforaphane. J. Agric. Food Chem., 2006, 54, 2069–2076.
  • 45. Michaelsen S., Mortensen K., Sørensen H., Myrosinases in Brassica: Characterization and properties. Proceeding of International Rapeseed Conference, Saskatoon, Canada, 1991, III, 905–910.
  • 46. Michel M., Autio K., Effects of high pressure on proteinand polysaccharide-based structures. 2002, in: Ultra High Pressure Treatments of Foods (eds. M. Hendrickx, D. Knorr). Kluwer Academic/Plenum Publisher, pp. 189–214.
  • 47. Mithen R., Faulkner K., Magrath R., Rose P., Williamson G., Marquez J., Development of isothiocyanate-enriched broccoli, and its enhanced ability to induce phase 2 detoxification enzymes in mammalian cells. Theor. Appl. Genet., 2003, 106, 727–734.
  • 48. Mosqueda-Melgar J., Raybaudi-Massilia R.M., Martin-Belloso O., Combination of high-intensity pulsed electric fields with natural antimicrobials to inactivate pathogenic microorganisms and extend the shelf-life of melon and watermelon juices. Food Microbiol., 2008, 25, 479–491.
  • 49. Oey I., Van der Plancken I., Van Loey A., Hendrickx M., Does high pressure processing influence nutritional aspects of plant based food systems? Trends Food Sci. Technol., 2008, 19, 300–308.
  • 50. Razis A.F.A., Bagatta M., De Nicola G.R., Iori R., Ioannides C., Intact glucosinolates modulate hepatic cytochrome P450 and phase II conjugation activities and may contribute directly to the chemopreventive activity of cruciferous vegetables. Toxicology, 2010, 277, 74–85.
  • 51. Soliva-Fortuny R., Balasa A., Knorr D., Martin-Belloso O., Effects of pulsed electric fields on bioactive compounds in foods: a review. Trends Food Sci. Technol., 2009, 20, 544–556.
  • 52. Sørensen H., Glucosinolates: Structure-Properties-Function. 1990, in: Rapeseed/Canola: Production, Chemistry, Nutrition and Processing Technology (ed. F. Shahidi). Van Nostrand Reinhold Publisher, pp. 149–172.
  • 53. Sørensen H., Sørensen J.C., Sørensen S., Phytochemicals in food: The plant as chemical factories. 2001, in: Biologically--Active Phytochemicals in Food. Analysis, Metabolism, Bioavailability and Function (eds. W. Pfannhauser, R.G. Fenwick, S. Khokhar). The Royal Society of Chemistry, UK, pp. 3–12.
  • 54. Sørensen H., Sørensen S., Bjergegaard C., Michaelsen S., Chromatography and Capillary Electrophoresis in Food Analysis. 1999, The Royal Society of Chemistry, UK, pp. 1–470.
  • 55. Van Eylen D., Bellostas N., Strobel B.W., Oey I., Hendrickx M., Van Loey A., Sørensen H., Sørensen J.C., Influence of pressure/temperature treatments on glucosinolate conversion in broccoli (Brassica oleraceae L. cv Italica) florets. Food Chem., 2009, 112, 646–653.
  • 56. Van Eylen D., Oey I., Hendrickx M., Van Loey A., Effects of pressure/ temperature treatments on stability and activity of endogenous broccoli (Brassica oleracea L. cv. Italica) myrosinase and on cell permeability. J. Food Eng., 2008, 89, 178–186.
  • 57. Vang O., Frandsen H., Hansen K.T., Sørensen J.N., Sørensen H., Andersen O., Biochemical effects of dietary intakes of different broccoli samples. I. Differential modulation of cytochrome P-450 activities in rat liver, kidney, and colon. Metab.-Clin. Exp., 2001, 50, 1123–1129.
  • 58. Verkerk R., Dekker M., Jongen W.M.F., Post-harvest increase of indolyl glucosinolates in response to chopping and storage of Brassica vegetables. J. Sci. Food Agric., 2001, 81, 953–958.
  • 59. Wilson D.R., Dabrowski L., Stringer S., Moezelaar R., Brocklehurst T.F., High pressure in combination with elevated temperature as a method for the sterilisation of food. Trends Food Sci. Technol., 2008, 19, 289–299.
  • 60. Zhang Y.S., Kensler T.W., Cho C.G., Posner G.H., Talalay P., Anticarcinogenic activities of sulforaphane and structurally related synthetic norbornyl isothiocyanates. Proc. Nat. Ac. Sci. USA, 1994, 91, 3147–3150.

Uwagi

PL
Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-d727a0c0-af72-4956-82fa-d15ee4367028
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.