PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 72 | 4 |

Tytuł artykułu

Effect of dopamine receptor stimulation on voltage-dependent fast-inactivating Na plus currents in medial prefrontal cortex (mPFC) pyramidal neurons in adult rats

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Impaired working memory is a common feature of neuropsychiatry disorders. It is dependent on control of the medial prefrontal cortex (mPFC) neurons by dopamine. The purpose of this study was to test the effects of a D1/5-type dopamine receptor agonist (SKF 38393, 10 ^M) on the membrane potential and on voltage-dependent fast-inactivating Na+ currents in mPFC pyramidal neurons obtained from adult (9-week-old) rats. Treatment of the pyramidal neurons with SKF 38393 did not affect the membrane potential recorded with the perforated-patch method. When recordings were performed in cell- attached configuration, the application of SKF 38393 did not change the Na+ current amplitude and shifted the current- voltage relationship of the Na+ currents towards hyperpolarisation, thus resulting in an increase of the current amplitudes in response to suprathreshold depolarisations. Pretreatment of the cells with a D1/5 receptor antagonist (SCH 23390, 10 ^M) abolished the effect of the D1/5-type receptors on Na+ currents. The effect of the D1/5 agonist was replicated by treating the cells with a membrane-permeable analogue, cAMP (8-bromo-cAMP, 100 ^M), and the effect was blocked by treating the cells with a protein kinase A inhibitor, (H-89, 2 ^M). In recordings performed from mechanically and enzymatically dispersed pyramidal neurons in the whole-cell configuration, when the cell interior was dialysed with pipette solution, application of the D1/5 agonist decreased the Na+ current amplitude without changing the current-voltage relationship. We conclude that in the mPFC pyramidal neurons in slices with an intact intracellular environment (recordings in the cell-attached configuration), the activation of D1/5 dopamine receptors increases the fast-inactivating Na+ current availability in response to suprathreshold depolarisations. The maximum Na+ current amplitude was not changed. A cAMP/protein kinase A pathway was responsible for the signal transduction from the D1/5 dopamine receptors to the Na+ channels.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

72

Numer

4

Opis fizyczny

p.351-364,fig.,ref.

Twórcy

autor
  • Department of Psychology and Pathophysiology, Medical University of Warsaw, Warsaw, Poland
autor
  • Department of Psychology and Pathophysiology, Medical University of Warsaw, Warsaw, Poland
autor
  • Department of Psychology and Pathophysiology, Medical University of Warsaw, Warsaw, Poland
autor
  • Department of Psychology and Pathophysiology, Medical University of Warsaw, Warsaw, Poland

Bibliografia

  • Akaike N, Harata N (1994) Nystatin perforated patch recording and its applications to analyses of intracellular mechanisms. Jpn J Physiol 106: 433-473.
  • Alzheimer C, Schwindt PC, Crill, WE (1993) Modal gating of Na+ channels as a mechanism of persistent Na+ cur¬rent in pyramidal neurons from rat and cat sensorimotor cortex. J Neurosci 13: 660-673.
  • Astman N, Gutnick MJ, Fleidervish IA (2006) Persistent Sodium Current in Layer 5 Neocortical neurons is pri¬marily generated in the proximal axon. J Neurosci 26: 3465-3473.
  • Baddeley AD, Hitch GJ (1974) Working memory. In: The psychology of Learning and Motivation (Bower GA, Ed.). Acadaemic Press, San Diego, CA. p. 47-89.
  • Beaulieu JM, Gainetdinov RR (2011) The physiology, sig¬naling, and pharmacology of dopamine receptors. Pharmacol Rev 63: 182-217.
  • Berger B, Gaspar P, Verney C (1991) Dopaminergic innerva¬tion of the cerebral cortex: unexpected differences between rodents and primates. Trends Neurosci 14: 21-27.
  • Berra-Romani R, Blaustein MP, Matteson DR (2005) TTX- sensitive voltage-gated Na+ channels are expressed in mesenteric artery smooth muscle cells. Am J Physiol Heart Circ Physiol 289: 137-145.
  • Bezanilla F, Armstrong CM (1977) Inactivation of the sodi¬um channel. II. Gating current experiments. J Gen Physiol 70: 549-566.
  • Cantrell AR, Scheuer T, Catterall WA (1999) Voltage- dependent neuromodulation of Na+ channels by D1-like dopamine receptors in rat hippocampal neurons. J Neurosci 19: 5301-5310.
  • Carr DB, Day M, Cantrell AR, Held J, Scheuer T, Catterall WA, Surmeier DJ (2003) Transmitter modulation of slow, activity-dependent alterations in sodium channel avail¬ability endows neurons with a novel form of cellular plasticity. Neuron 39: 793-806.
  • Chen G, Greengard P, Yan Z (2004) Potentiation of NMDA receptor currents by dopamine D1 receptors in prefrontal cortex. Proc Natl Acad Sci U S A 101:2596-2600.
  • Chen L, Bohanick JD, Nishihara M, Seamans JK, Yang CR (2007) Dopamine D1/5 receptor-mediated long-term potentiation of intrinsic excitability in rat prefrontal corti¬cal neurons: Ca2+-dependent intracellular signaling. J Neurophysiol 97: 2448-2464.
  • Crill WE (1996) Persistent sodium current in mammalian central neurons. Annu Rev Physiol 58: 349-362.
  • Dash P, Moore A, Kobori N, Runyan J (2007) Molecular activity underlying working memory. Learn Mem 14: 554-563.
  • Dong Y, White FJ (2003) Dopamine D1-class receptors selectively modulate a slowly inactivating potassium cur¬rent in rat medial prefrontal cortex pyramidal neurons. J Neurosci 23: 2686-2695.
  • Gasparini S, Magee JC (2002) Phosphorylation-dependent differences in the activation properties of distal and proximal dendritic Na+ channels in rat CA1 hippocampal neurons. J Physiol 541: 665-672.
  • Goldman-Rakic PS (1995) Cellular basis of working memo¬ry. Neuron 14: 477-485.
  • Gonzalez-Islas C, Hablitz JJ (2003) Dopamine enhances EPSCs in layer II-III pyramidal neurons in rat prefrontal cortex. J Neurosci 23: 867-875.
  • Gorelova NA, Yang CR (2000) Dopamine D1/D5 receptor activation modulates a persistent sodium current in rat prefrontal cortical neurons in vitro. J Neurophysiol 84: 75-87.
  • Helmstaedter C, Schoof K, Rossmann T, Reuner G, Karlmeier A, Kurlemann G (2010) Introduction and first validation of EpiTrack Junior, a screening tool for the assessment of cognitive side effects of antiepileptic medication on attention and executive functions in chil¬dren and adolescents with epilepsy. Epilepsy Behav 19: 55-64.
  • Heng LJ, Markham JA, Hu XT, Tseng KY (2011) Concurrent upregulation of postsynaptic L-type Ca(2+) channel func¬tion and protein kinase A signaling is required for the periadolescent facilitation of Ca(2+) plateau potentials and dopamine D1 receptor modulation in the prefrontal cortex. Neuropharmacology 60: 953-962.
  • Henze DA, Gonzalez-Burgos GR, Urban NN, Lewis DA, Barrionuevo G (2000) Dopamine increases excitability of pyramidal neurons in primate prefrontal cortex. J Neurophysiol 84: 2799-2809.
  • Holz GG, Kang G, Harbeck M, Roe MW, Chepurny OG (2006) Cell physiology of cAMP sensor Epac. J Physiol 577: 5-15.
  • Isaac JT, Wheal HV (1993) The local unaesthetic QX-314 enables enhanced whole-cell recordings of excitatory synaptic currents in rat hippocampal slices in vitro. Neurosci Lett 150: 227-230.
  • Kolb B (1984) Functions of the frontal cortex of the rat: a comparative review. Brain Res 320: 65-98.
  • Kruse MS, Premont J, Krebs MO, Jay TM, (2009) Interaction of dopamine D1 with NMDA NR1 receptors in rat pre¬frontal cortex. Eur Neuropsychopharmacol 19: 296-304.
  • Lavin A, Grace AA (2001) Stimulation of D1-type dopamine receptors enhances excitability in prefrontal cortical pyra¬midal neurons in a state-dependent manner. Neuroscience 104: 335-346.
  • Magee JC, Johnston D (1995) Characterization of single voltage-gated Na+ and Ca2+ channels in apical dendrites of rat CA1 pyramidal neurons. J Physiol 487: 67-90.
  • Mantegazza M, Yu FH, Powell AJ, Clare JJ, Catterall WA, Scheuer T (2005) Molecular determinants for modulation of persistent sodium current by G-protein betagamma subunits. J Neurosci 25: 3341-3349.
  • Maurice N, Tkatch T, Meisler M, Sprunger LK, Surmeier DJ (2001) D1/D5 dopamine receptor activation differen¬tially modulates rapidly inactivating and persistent sodi¬um currents in prefrontal cortex pyramidal neurons. J Neurosci 21: 2268-2277.
  • Meador KJ, Gevins A, Loring DW, McEvoy LK, Ray PG, Smith ME, Motamedi GK, Evans BM, Baum C (2007) Neuropsychological and neurophysiologic effects of car- bamazepine and levetiracetam. Neurology 69: 2076¬2084.
  • Moore AR, Zhou WL, Potapenko ES., Kim EJ, Antic SD (2011) Brief dopaminergic stimulations produce transient physiological changes in prefrontal pyramidal neurons. Brain Res 1370: 1-15.
  • Nowak K, Meyza K, Nikolaev E, Hunt MJ, Kasicki S (2012) Local blockade of NMDA receptors in the rat prefrontal cortex increases c-Fos expression in multiple subcortical regions. Acta Neurobiol Exp (Wars) 72: 207-218.
  • Ono K, Kiosue T, Arita M (1989) Isoproterenol, DBcAMP, and forskolin inhibit cardiac sodium current. Am J Physiol Cell Physiol 256: 1131-1137.
  • Ono K, Fozzard HA, Hanck DA (1993) Mechanism of cAMP dependent modulation of cardiac sodium channel current kinetics. Circ Res 72: 807-815.
  • Penit-Soria J, Audinat E, Crepel F (1987) Excitation of rat prefrontal cortical neurons by dopamine: an in vitro elec-trophysiological study. Brain Res 425: 263-274.
  • Peterson JD, Wolf ME, White FJ (2006) Repeated amphet¬amine administration decreases D1 dopamine receptor- mediated inhibition of voltage-gated sodium currents in the prefrontal cortex. J Neurosci 26: 3164-3168.
  • Rola R, Szulczyk B, Szulczyk P, Witkowski G (2002) Expression and kinetic properties of Na+ currents in rat cardiac dorsal root ganglion neurons. Brain Res 947: 67-77.
  • Rola R, Szulczyk P (2004) Kinetic properties of voltage- gated Na+ currents in rat muscular sympathetic neurons with and without ATP and GTP in intracellular solution. Neurosci Lett 359: 53-56.
  • Rosenkranz JA, Johnston D (2007) State-dependent modula¬tion of amygdala inputs by dopamine-induced enhance¬ment of sodium currents in layer V enthorinal cortex. J Neurosci 27: 7054-7069.
  • Schubert B, Vandongen AMJ, Kirch G, Brown AM, (1990) Inhibition of cardiac Na+ currents by isoprotenerol. Am J Physiol Heart Circ Physiol 258: 977-982.
  • Seamans JK, Durstewitz D, Christie BR, Stevens CF, Sejnowski TJ (2001) Dopamine D1/D5 receptor modula¬tion of excitatory synaptic inputs to layer V prefrontal cortex neurons. Proc Natl Acad Sci U S A 98: 301-306.
  • Shi WX, Zheng P, Liang XF, Bunney BS (1997) Characterization of dopamine-induced depolarization of prefrontal cortical neurons. Synapse 26: 415-422.
  • Sobotka S, Diltz MD, Ringo JL (2005) Can delay-period activity explain working memory? J Neurophysiol 93: 128-136.
  • Sommer BR, Fenn HH (2010) Review of topiramate for the treatment of epilepsy in elderly patients. Clin Interv Aging 5: 89-99.
  • Spear LP (2000) Neurobehavioral changes in adolescence. Curr Dir Psychol Sci 9: 111-114.
  • Szulczyk B, Szulczyk P (2003) Postdecentralization plastic¬ity of voltage-gated Na+ currents in rat glandular sympa¬thetic neurons. Neurosci Lett 343: 105-108.
  • Thurley K, Senn W, Luscher HR (2008) Dopamine increases the gain of the input-output response of rat prefrontal pyramidal neurons. J Neurophysiol 99: 2985-2997.
  • Tseng KY, O'Donnell P (2004) Dopamine-glutamate inter¬actions controlling prefrontal cortical pyramidal cell excitability involve multiple signaling mechanisms. J Neurosci 24: 5131-5139.
  • Tseng KY, O'Donnell P (2005) Post-pubertal emergence of prefrontal cortical up states induced by D1-NMDA co- activation. Cereb Cortex 15: 49-57.
  • Williams GW, Castner SA (2006) Under the curve: critical issues for elucidating D1 receptor function in working memory. Neuroscience 139: 263-276.
  • Witkowski G, Szulczyk P (2006) Opioid mi receptor activa¬tion inhibits sodium currents in prefrontal cortical neu¬rons via a protein kinase A- and C-dependent mechanism. Brain Res 1094: 92-106.
  • Witkowski G, Szulczyk B, Rola R, Szulczyk P (2008) D(1) dopaminergic control of G protein-dependent inward rec¬tifier K(+) (GIRK)-like channel current in pyramidal neurons of the medial prefrontal cortex. Neuroscience 155: 53-63.
  • Yang CR, Seamans JK (1996) Dopamine D1 receptor actions in layers V-VI rat prefrontal cortex neurons in vitro: modulation of dendritic-somatic signal integration. J Neurosci 16: 1922-1935.
  • Zohar O, Rubovitch V, Milman A, Schreiber S, Pick CG (2011) Behavioral consequences of minimal traumatic brain injury in mice. Acta Neurobiol Exp (Wars) 71: 36-45.

Uwagi

Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-d68ec6ab-8b93-4bbd-987c-231984b32fbd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.