PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 32 | 6 |

Tytuł artykułu

Cloning, molecular characterization and expression analysis of a SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE gene (CitSERK1-like) in Valencia sweet orange

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Somatic embryogenesis receptor-like kinase (SERK) belonging to the receptor-like kinases (RLKs) has been shown to be implicated in somatic embryogenesis (SE). In this study, a somatic embryogenesis receptor-like gene CitSERK1-like was cloned and characterized from Citrus sinensis cv. ‘Valencia’, a genotype with high somatic embryogenesis capacity for over 26 years. Fifteen consecutive amino acids in putative leucine zipper domain of CitSERK1-like gene were different from the reported CitSERK1 gene. Homology search and sequence analysis demonstrated that the deduced CitSERK1-like protein shared a high degree of identity with SERKs from other species in sequence and structure. Real-time PCR analysis revealed that the transcript of CitSERK1-like was enhanced during the induction of SE. At subsequent embryo-transition phase, a moderate level of expression was detected in heart-torpedo and cotyledon embryos, while low expression was detected in globular embryo. Among the different tissues, the expression of CitSERK1-like was highest in young leaves. Further analysis of its spatial expression by in situ hybridization revealed that CitSERK1-like was mainly located in the embryogenic callus and vascular cells of different embryos or tissues. The results of temporal and spatial expression of CitSERK1-like showed that it played critical roles throughout the process of SE and had a broader role in plant development. In addition, CitSERK1-like expression was up-regulated by 2, 4-D and NAA at the early stage, but down-regulated afterward. Taken together, it suggested that CitSERK1-like activated complex developmental pathways associated with somatic embryogenesis and plant growth.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

32

Numer

6

Opis fizyczny

p.1197-1207,fig.,ref.

Twórcy

autor
  • National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
autor
  • National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
autor
  • National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
autor
  • National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China

Bibliografia

  • Albertini E, Marconi G, Reale L, Barcaccia G, Porceddu A, Ferranti F, Falcinelli M (2005) SERK and APOSTART, candidate genes for apomixis in Poa pratensis. Plant Physiol 138:2185–2199
  • Albrecht C, Russinova E, Kemmerling B, Kwaaitaal M, de Vries SC (2008) Arabidopsis SOMATIC EMBRYOGENESISI RECEPTOR KINASE proteins serve Brassinosteroid-dependent and -independent signaling pathways. Plant Physiol 148:611–619
  • Baudino S, Hansen S, Brettschneider R, Hecht VFG, Dresselhaus T, Lorz H, Dumas C, Rogowsky PM (2001) Molecular characterization of two novel maize LRR receptor-like kinases, which belong to the SERK gene family. Planta 213:1–10
  • Ben-Hayyim G, Neumann H (1983) Stimulatory effect of glycerol on growth and somatic embryogenesis in Citrus callus cultures. Z Pflanzenphysiol (Plant Physiol Biochem) 110:331–337
  • Boutilier K, Offringa R, Sharma VK, Kieft H, Ouellet T, Zhang L, Hattori J, Liu CM, van Lammeren AA, Miki BL, Custers JB, van Lookeren Campagne MM (2002) Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell 14:1737–1749
  • Cheng YJ, Guo WW, Yi HL, Pang XM, Deng XX (2003) An efficient protocol for genomic DNA extraction from Citrus species. Plant Mol Biol Rep 21:177a–177g
  • Chugh A, Khurana P (2002) Gene expression during somatic embryogenesis—recent advances. Curr Sci 83:715–729
  • Colcombet J, Boisson-Dernier A, Ros-Palau R, Vera CE, Schroeder JI (2005) Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASES1 and 2 are essential for tapetum development and microspore maturation. Plant Cell 17:3350–3361
  • Deng XX (1987) Studies on the isolation, regeneration and fusion of protoplasts in Citrus. PhD Dissertation, Huazhong Agricultural University
  • Dodeman VL, Ducreux G, Kreis M (1997) Zygotic embryogenesis versus somatic embryogenesis. J Exp Bot 48:1493–1509
  • Fambrini M, Durante C, Cionini G, Geri C, Giorgetti L, Michelotti V, Salvini M, Pugliesi C (2006) Characterization of LEAFY COTYLEDON1-LIKE gene in Helianthus annuus and its relationship with zygotic and somatic embryogenesis. Dev Genes Evol 216:253–264
  • Francois J, Lallemand M, Fleurat-Lessard P, Laquitaine L, Delrot S, Coutos-Thevenot P, Gomes E (2008) Overexpression of the VvLTP1 gene interferes with somatic embryo development in grapevine. Funct Plant Biol 35:394–402
  • Gaj MD, Zhang S, Harada JJ, Lemaux PG (2005) Leafy cotyledon genes are essential for induction of somatic embryogenesis of Arabidopsis. Planta 22:977–988
  • Gill MIS, Singh Z, Dhillon BS, Gosal SS (1995) Somatic embryogenesis and plantlet regeneration in mandarin (Citrus reticulata Blanco). Sci Hortic 63:167–174
  • Gmitter FG Jr, Moore GA (1986) Plant regeneration from undeveloped ovules and embryogenic calli of Citrus: embryo production, germination and plant survival. Plant Cell Tissue Organ Cult 6:139–147
  • Guo WW, Cai XD, Cheng YJ, Grosser JW, Deng XX (2007a) Protoplast technology and citrus improvement. In: Xu ZH, Li JY, Xue YB, Yang WC (eds) Biotechnology and Sustainable Agriculture 2006 and Beyond. Proceedings of 11th IAPTC&B Congress. Springer, Beijing, pp 461–464
  • Guo WW, Li DL, Duan YX (2007b) Citrus transgenics: current status and prospects. Transgenic Plant J 1(1):202–209
  • Hao YJ, Deng XX (2002) Stress treatments and DNA methylation affected the somatic embryogenesis of citrus callus. Acta Bot Sin 44:673–677
  • He K, Gou XP, Yuan T, Lin HH, Asami T, Yoshida S, Russell SD, Li J (2007) BAK1 and BKK1 regulate Brassinosteroid-dependent growth and Brassinosteroid-independent cell death pathways. Curr Biol 17:1109–1115
  • Hecht V, Vielle-Calzada J-P, Hartog MV, Schmidt ED, Boutilier K, Grossniklaus U, de Vries SC (2001) The Arabidopsis somatic embryogenesis receptor kinase 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in cultures. Plant Physiol 127:803–816
  • Hu H, Xiong L, Yang Y (2005) Rice SERK1 gene positively regulates somatic embryogenesis of cultured cell and host defense response against fungal infection. Planta 222:107–117
  • Hu ZY, Tong Z, Wei H, Yi HL, Deng XX (2006) Mitochondria gene expression in stamens is differentially regulated during male gametogenesis inCitrus unshiu. J Hortic Sci Biotechnol 81:565–569
  • Ishizaki T, Megumi C, Komai F, Masuda K, Oosawa K (2002) Accumulation of a 31-kDa glycoprotein in association with the expression of embryogenic potential by spinach callus in culture. Physiol Plant 114:109–115
  • Jumin HB, Nito N (1996) Plant regeneration via somatic embryogenesis from protoplasts of six plant species related to Citrus. Plant Cell Rep 15:332–336
  • Kawade K, Ishizaki T, Masuda K (2008) Differential expression of ribosome-inactivating protein genes during somatic embryogenesis in spinach (Spinacia oleracea). Physiol Plant 134:270–281
  • Kayim M, Koc NK (2006) Effects of some carbohydrates on growth and somatic embryogenesis in citrus callus culture. Sci Hortic 109:29–34
  • Kochba J, Spiegel-Roy P (1977) The effect of auxins, cytokinins and inhibitors on embryogenesis in habituated ovular callus of the ‘Shamouti’ orange (Citrus sinensis). Z Pflanzenphysiol 81:283–288
  • Kwaaitaal MACJ, de Vries SC (2007) The SERK1 gene is expressed in procambium and immature vascular cells. J Exp Bot 58:2887–2896
  • Kwong RW, Bui AQ, Lee H, Kwong LW, Fischer RL, Goldberg RB, Harada JJ (2003) LEAFY COTYLEDON1-LIKE defines a class of regulators essential for embryo development. Plant Cell 15:5–18
  • Liu JH, Deng XX (2002) Regeneration and analysis of citrus interspecific mixoploid hybrid plants from asymmetric somatic hybridization. Euphytica 125:3–20
  • Liu Y, Liu Q, Tao NG, Deng XX (2006) Efficient isolation of RNA from fruit peel and pulp of ripening navel orange (Citrus sinensis Osbeck). J Huazhong Agric Univ 25:300–304
  • Mantiri FR, Kurdyukov S, Lohar DP, Sharopova N, Saeed NA, Wang XD, Vanden Bosch KA, Rose RJ (2008) The transcription factor MtSERF1 of the ERF subfamily identified by transcriptional profiling is required for somatic embryogenesis induced by auxin plus cytokinin in Medicago truncatula. Plant Physiol 146:1622–1636
  • Maul P, Bausher M, McCollum G, Mozoruk J, Niedz R (2006) CsHPt1, a putative histidine-containing phosphotransmitter protein induced during early somatic embryogenesis in Valencia sweet orange. Plant Sci 170:44–53
  • Michalczuk L, Cooke TJ, Cohen JD (1992a) Auxin levels at different stages of carrot somatic embryogenesis. Phytochemistry 31:1097–1103
  • Michalczuk L, Ribnieky DM, Cooke TJ, Cohen JD (1992b) Regulation of indole-3-acetic acid biosynthetic pathways in carrot cell cultures. Plant Physiol 100:1346–1353
  • Murashige T, Tucker DPH (1969) Growth factors requirement of citrus tissue cultures. In: Chapman HD (ed) Proceedings of the International Citrus Symposium, vol 3, pp 1155–1161
  • Niedz RP, Moshonas MG, Peterson B, Shapiro JP, Shaw PE (1997) Analysis of sweet orange (Citrus sinensis (L.) Osbeck) callus cultures for volatile compounds by gas chromatography with mass selective detector. Plant Cell Tissue Organ Cult 51:181–185
  • Nito N, Iwamasa M (1990) In vitro plantlet from juice vesicle callus of Satsuma (Citrus unshiu Marc.). Plant Cell Tissue Organ Cult 20:137–140
  • Nolan KE, Irwanto RR, Rose RJ (2003) Auxin up-regulates MtSERK1 expression in both Medicago truncatula root-forming and embryogenic cultures. Plant Physiol 133:218–230
  • Nolan KE, Kurdyukov S, Rose RJ (2009) Expression of the SOMATIC EMBRYOGENESIS RECEPTORLIKE KINASE1 (SERK1) gene is associated with developmental change in the life cycle of the model legume Medicago truncatula. J Exp Bot 60:1759–1771
  • Perez-Nunez MT, Souza R, Saenz L, Chan JL, Zuniga-Aguilar JJ, Oropeza C (2009) Detection of a SERK-like gene in coconut and analysis of its expression during the formation of embryogenic callus and somatic embryos. Plant Cell Rep 28:9–11
  • Santos MO, Romano E, Yotoko KSC, Tinoco MLP, Dias BBA, Aragao FJL (2005) Characterisation of the cacao somatic embryogenesis receptor-like kinase (SERK) gene expressed during somatic embryogenesis. Plant Sci 168:723–729
  • Santos MO, Romano E, Vieira LS, Baldoni AB, Aragao FJL (2009) Suppression of SERK gene expression affects fungus tolerance and somatic embryogenesis in transgenic lettuce. Plant Biol 11:83–89
  • Schellenbaum P, Jacques A, Maillot P, Bertsch C, Mazet F, Farine S, Walter B (2008) Characterization of VvSERK1, VvSERK2, VvSERK3 and VvL1L genes and their expression during somatic embryogenesis of grapevine (Vitis vinifera L.). Plant Cell Rep 27:1799–1809
  • Schmidt ED, Guzzo F, Toonen MA, de Vries SC (1997) A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos. Development 124:2049–2062
  • Sharma SK, Millam S, Hedley PE, McNicol J, Bryan GJ (2008) Molecular regulation of somatic embryogenesis in potato: an auxin led perspective. Plant Mol Biol 68:185–201
  • Shimada T, Hirabayashi T, Endo T, Fujii H, Kita M, Omura M (2005) Isolation and characterization of the somatic embryogenesis receptor-like kinase gene homologue (CitSERK1) from Citrus unshiu Marc. Sci Hortic 103:233–238
  • Singla B, Khurana JP, Khurana P (2008) Characterization of three somatic embryogenesis receptor kinase genes from wheat, Triticum aestivum. Plant Cell Rep 27:833–843
  • Somleva MN, Schmidt EDL, de Vries SC (2000) Embryogenic cells in Dactylis glomerata L. (Poaceae) explants identified by cell tracking and by SERK expression. Plant Cell Rep 19:718–726
  • Song DH, Li GJ, Song FM, Zheng Z (2008) Molecular characterization and expression analysis of OsBISERK1, a gene encoding a leucine-rich repeat receptor-like kinase, during disease resistance responses in rice. Mol Biol Rep 35:275–283
  • Srinivasan C, Liu Z, Heidmann I, Supena ED, Fukuoka H, Joosen R, Lambalk J, Angenent G, Scorza R, Custers JB, Boutilier K (2007) Heterologous expression of the BABY BOOM AP2/ERF transcription factor enhances the regeneration capacity of tobacco (Nicotiana tabacum L.). Planta 225:341–351
  • Stone SL, Kwong LW, Yee KM, Pelletier J, Lepiniec L, Fischer RL, Goldberg RB, Harada JJ (2001) LEAFY COTYLEDON2 encodes B3 domain transcription factor that induces embryo development. Proc Natl Acad Sci USA 98:11806–11811
  • Tisserat B, Murashige T (1977) Repression of asexual embryogenesis in vitro by some plant growth regulator. In Vitro 13:799–805
  • Zhao DZ (2009) Control of anther cell differentiation: a teamwork of receptor-like kinases. Sex Plant Reprod 22:221–228
  • Zimmerman JL (1993) Somatic embryogenesis: a model for early development in higher plants. Plant Cell 5:1141–1423
  • Zuo J, Niu QW, Frugis G, Chua NH (2001) The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. Plant J 30:349–359

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-d437c771-7ceb-4ebd-a2c5-ab62854fbdf7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.