PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 64 | 1 |

Tytuł artykułu

A new mammal from the Turonian–Campanian (Upper Cretaceous) Galula Formation, southwestern Tanzania

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
We here establish a new mammaliaform genus and species, Galulatherium jenkinsi (Mammalia), from the Upper Cretaceous Galula Formation in the Rukwa Rift Basin of southwestern Tanzania. This represents the first named taxon of a mammaliaform from the entire Late Cretaceous of continental Afro-Arabia, an interval of 34 million years. Preliminary study of the holotypic and only known specimen (a partial dentary) resulted in tentative assignation to the Gondwanatheria, a poorly known, enigmatic clade of Late Cretaceous–Paleogene Gondwanan mammals (Krause et al. 2003). The application of advanced imaging (μCT) and visualization techniques permits a more detailed understanding of key anatomical features of the new taxon. It reveals that the lower dentition consisted of a large, procumbent lower incisor and four cheek teeth, all of which were evergrowing (hypselodont). Importantly, all of the teeth appear devoid of enamel. Comparisons conducted with a range of Mesozoic and selected Cenozoic mammaliaform groups document a number of features (e.g., columnar, enamel-less and evergrowing teeth, with relatively simple occlusal morphology) expressed in Galulatherium that are reminiscent of several distantly related groups, making taxonomic assignment difficult at this time. Herein we retain the provisional referral of Galulatherium (RRBP 02067) to Gondwanatheria; it is most similar to sudamericids such as Lavanify and Bharratherium from the Late Cretaceous of Madagascar and India, respectively, in exhibiting relatively simple, high-crowned, columnar cheek teeth. Other features (e.g., enamel-less dentition) are shared with disparate forms such as the Late Jurassic Fruitafossor and toothed xenarthrans (e.g., sloths), here attributed to convergence. Revised analyses of the depositional context for the holotype place it as having lived sometime between the late Turonian and latest Campanian (roughly 91–72 million years ago). This enhanced geochronological context helps to refine the palaeobiogeographical significance of Galulatherium among Cretaceous mammals in general and those from Gondwanan landmasses specifically.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

64

Numer

1

Opis fizyczny

p.65-84,fig.,ref.

Twórcy

  • Ohio Center for Ecology and Evolutionary Studies, 228 Irvine Hall, Athens, Ohio 45701 USA
  • Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, 228 Irvine Hall, Athens, Ohio 45701, USA
autor
  • Department of Earth Sciences, Denver Museum of Nature and Science, Denver, CO, 80205, USA
  • Department of Anatomical Sciences, Stony Brook University, Stony Brook, NY 11794-8081, USA
autor
  • Ohio Center for Ecology and Evolutionary Studies, 228 Irvine Hall, Athens, Ohio 45701 USA
  • Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, 228 Irvine Hall, Athens, Ohio 45701, USA
autor
  • Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, 228 Irvine Hall, Athens, Ohio 45701, USA
  • Department of Mammalogy, American Museum of Natural History, New York, NY, 20212, USA
  • Department of Zoology, Swedish Museum of Natural History, Box 50007, 10405 Stockholm, Sweden
autor
  • Department of Geosciences, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia

Bibliografia

  • Bi, S., Wang, Y., Guan, J., Sheng, X., and Meng, J. 2014. Three new Jurassic euharamiyidan species reinforce early divergence of mammals. Nature 514: 579–584.
  • Bonaparte, J.F. 1990. New Late Cretaceous mammals from the Los Alamitos Formation, northern Patagonia. National Geographic Research 6: 63–93.
  • Brunet, M., Coppens, Y., Dejax, J., Flynn, L.J., Heintz, E., Hell, J.V., Jacobs, L.J., Jehenne, Y., Mouchelin, G., Pilbeam, D., and Sudre, J. 1990. Nouveaux mammifè res du Cré tacé infé rieur du Cameroun. Comptes Rendus de l’Académie des Sciences Série II 310: 1139–1146.
  • Brunet, M., Jacobs, L., Congleton, J., Coppens, Y., Dejax, J., Flynn, L., Hell, J., Jehenne, Y., Mouchelin, G., and Pilbeam, D. 1988. Première d.couverte d’un fragment de mandibule de Mammifère dans le Crétacé d’Afrique (Cameroun, Bassin de Koum). Comptes Rendus de l’Académie des Sciences Série 307: 1675–1680.
  • Butler, P.M. and Hooker J.J. 2005. New teeth of allotherian mammals from the English Bathonian, including the earliest multituberculates. Acta Palaeontologica Polonica 50: 185–207.
  • Butler, P.M. and MacIntyre, G.T. 1994. Review of the British Harami yidae (?Mammalia,Allotheria), their molar occulsion and relationships. Philo sophical Transactions of the Royal Society of London B 345: 433–458.
  • Contessi, M. 2013. First report of mammal-like tracks from the Cretaceous of North Africa (Tunisia). Cretaceous Research 42: 48–54.
  • Cuvier, G. 1823. Recherches sur les Ossements Fossiles. Vol. V, Part 1, 134–135. Chez G. Dufour et E. d’Ocagne, Paris.
  • Davis, BM. 2012. Micro-computed tomography reveals a diversity of peramuran mammals from the Purbeck Group (Berriasian) of England. Palaeontology 55: 789–817.
  • Davit-Béal, T., Tucker, A.S., and Sire, J.-Y. 2009. Loss of teeth and enamel in tetrapods: fossil record, genetic data and morphological adaptations. Journal of Anatomy 214: 477–501.
  • Fisher, D.C. 1981. Crocodilian scatology, microvertebrate concentrations, and enamel-less teeth. Paleobiology 7: 262–275.
  • Gaudin, T.J. and Croft, D.A. 2015. Paleogene Xenarthra and the evolution of South American mammals. Journal of Mammalogy 96: 622–634.
  • Goin, F.J., Reguero, M.A., Pascual, R., Koenigswald, W. von, Woodburne, M.O., Case, J.A., Vieytes, C., Marenssi, S.A., and Vizcaíno, S.F. 2006. First gondwanatherian mammal from Antarctica. In: J.E. Francis, D. Pirrie, and J.A. Crame (eds.), Cretaceous–Tertiary High-Latitude Palaeoenvironments, James Ross Basin, Antarctica G. Geological Society of London, Special Publications 258: 135–144. Geological Society of London, London.
  • Goin, F.J., Tejedor, M.F., Chornogubsky, L., López, G.M., Gelfo, J.N., Bond, M., Woodburne, M.O., Gurovich, Y., and Reguero, M. 2012. Persistence of a Mesozoic, non-therian mammalian lineage (Gondwanatheria) in the mid-Paleogene of Patagonia. Naturwissenschaften 99: 449–463.
  • Gorscak, E., O’Connor, P.M., Roberts, E.M., and Stevens, N.J. 2017. The second titanosaurian (Dinosauria: Sauropoda) from the middle Cretaceous Galula Formation, southwestern Tanzania with remarks on African titanosaurian diversity. Journal of Vertebrate Paleontology 37. [published online, https://doi.org/10.1080/02724634.2017.1343250]
  • Gunnell, G.F. and Rose, K.D. 2008. “Edentata” summary. In: C.M. Janis, G.F. Gunnell, and M.D. Uhen (eds.), Evolution of Tertiary Mammals of North America: Volume 2: Small Mammals, Xenarthrans, and Marine Mammals, 127–134. Cambridge University Press, Cambridge.
  • Gurovich, Y. 2006. Bio-evolutionary Aspects of Mesozoic Mammals: Description, Phylogenetic Relationships and Evolution of the Gondwanatheria (Late Cretaceous and Paleocene of Gondwana). 621 pp. Ph.D. Dissertation, Universidad Nacional de Buenos Aires, Buenos Aires.
  • Gurovich, Y. 2008. Additional specimens of Sudamericid (Gondwanatheria) mammals from the early Paleocene of Argentina. Palaeontology 51: 1069–1089.
  • Gurovich, Y. and Beck, R. 2009. The phylogenetic affinities of the enigmatic mammalian clade Gondwanatheria. Journal of Mammalian Evolution 16: 25–49.
  • Haddoumi, H., Allain, R., Meslouh, S., Metais, G., Monbaron, M., Pons, D., Rage, J.-C., Vullo, R., Zouhri, S., and Gheerbrant, E. 2016. Guelb el Ahmar (Bathonian, Anoual Syncline, eastern Morocco): first continental flora and fauna including mammals from the Middle Jurassic of Africa. Gondwana Research 29: 290–319.
  • Hahn, G. 1973. Neue Zähne von Haramiyiden aus der Deutschen Ober-Trias und ihre Beziehungen zu den Multituberculaten. Palaeontographica, Abteilung A 142: 1–15.
  • Hahn, G. and Hahn, R. 2006. Evolutionary tendencies and systematic arrangement in the Haramiyida (Mammalia). Geologica et Palaeontologica 40: 173–193.
  • Hahn, G., Sigogneau-Russell, D., and Wouters, G. 1989. New data on Theroteinidae: their relations with Paulchoffatiidae and Haramiyidae. Geologica et Palaeontologica 23: 205–215.
  • Han, G., Mao, F., Bi, S., Wang, Y., and Meng, J. 2017. A Jurassic gliding euharamiyidan mammal with an ear of five auditory bones. Nature 551: 451–457.
  • Hautier, L., Gomes Rodrigues, H., Billet, G., and Asher, R.J. 2016. The hidden teeth of sloths: evolutionary vestiges and the development of a simplified dentition. Scientific Reports 6: 27763.
  • Huttenlocker, A.K., Grossnickle, D.M., Kirkland, J.I., Schultz, J.A., and Luo, Z.X. 2018. Late-surviving stem mammal links the lowermost Cretaceous of North America and Gondwana. Nature 558: 108–112.
  • Jacobs, L.L., Congleton, J.D., Brunet, M., Dejax, J., Flynn, L.J., Hell, J.V., and Mouchelin, G. 1988. Mammal teeth from the Cretaceous of Africa. Nature 336: 158–160.
  • Jacobs, L.L., Polcyn, M.J., Mateus, O., Schulp, A.S., Gonçalves, A.O., and Morais, M.L. 2016. Post-Gondwana Africa and the vertebrate history of the Atlantic Angolan coast. Memoirs of Museum Victoria 74: 343–362.
  • Jenkins, F.A., Gatesy, S.M. Shubin, N.H, and Amaral, W.W. 1997. Haramiyids and Triassic mammalian evolution. Nature 385: 715–718.
  • Jepsen, G.L. 1932. Tubulodon taylori, a Wind River Eocene tubulidentate from Wyoming. Proceedings of the American Philosophical Society 71: 255–274.
  • Ji, Q., Luo, Z.-X., Zhang, X., Yuan, C.-X., and Xu, L. 2009. Evolutionary development of the middle ear in Mesozoic therian mammals. Science 326: 278–281.
  • Kalthoff, D.C. 2011. Microstructure of dental hard tissues in fossil and recent xenarthrans (Mammalia: Folivora and Cingulata). Journal of Morphology 272: 641–661.
  • Kalthoff, D.C., Rose, K.D., and Koenigswald, W. von 2011. Dental microstructure in Palaeanodon and Tubulodon (Palaeanodonta) and bioerosional tunneling as a widespread phenomenon in fossil mammal teeth. Journal of Vertebrate Paleontology 31: 1303–1313.
  • Kermack, K.A., Kermack, D.M., Lees, P.M., and Mills, J.R.E. 1998. New multituberculate-like teeth from the Middle Jurassic of England. Acta Palaeontologica Polonica 43: 581–606.
  • Kielan-Jaworowska, Z. and Bonaparte, J.F. 1996. Partial dentary of a multituberculate mammal from the Late Cretaceous of Argentina and its taxonomic implications. Museo Argentino de Ciencias Naturales “Bernardino Rivadavia” e Instituto Nacional de Investigación de las Ciencias Naturales 145: 1–9.
  • Kielan-Jaworowska, Z. and Hurum, J.H. 1997. Djadochtatheria—a new suborder of multituberculate mammals. Acta Palaeontologica Polonica 42: 201–242.
  • Kielan-Jaworowska, Z. and Hurum, J.H. 2001. Phylogeny and systematics of multituberculate mammals. Palaeontology 44: 389–429.
  • Kielan-Jaworowska, Z., Cifelli, R.L., and Luo, Z.-X. 2004. Mammals from the Age of Dinosaurs: Origins, Evolution, and Structure. 630 pp. Columbia University Press, New York.
  • Kielan-Jaworowska, Z., Dashzeveg, D., and Trofimov, B.A. 1987. Early Cretaceous multituberculates from Mongolia and a comparison with Late Jurassic forms. Acta Palaeontologica Polonica 38: 3–47.
  • Klein, H., Lagnaoui, A., Gierliński, G.D., Saber, H., Lallensack, J.N., Oukassou, M., and Charrière, A. 2018. Crocodylomorph, turtle and mammal tracks in dinosaur-dominated Middle–?Upper Jurassic and mid-Cretaceous ichnoassemblages of Morocco. Palaeogeography, Palaeoclimatology, Palaeoecology 498: 39–52.
  • Koenigswald, W. von 1988. Enamel modification in enlarged front teeth among mammals and the various possible reinforcements of the enamel. In: D.E. Russell, J.-P. Santoro, and D. Sigogneau-Russell (eds.), Teeth Revisited: Proceedings of the VIIth International Symposium on Dental Morphology, Paris 1986. Mémoires du Muséum National d’Histoire Naturelle, Paris (série C) 53: 147–167.
  • Koenigswald, W. von 2011. Diversity of hypsodont teeth in mammalian dentitions—construction and classification. Palaeontographica Abteilung A 294: 63–94.
  • Koenigswald, W. von, Goin, F.J., and Pascual, R. 1999. Hypsodonty and enamel microstructure in the Paleocene gondwanatherian mammal Sudamerica ameghinoi. Acta Palaeontologica Polonica 44: 263–300.
  • Krause, D.W. 1980. Multituberculates from the Clarkforkian Land-Mammal Age, late Paleocene–early Eocene, of western North America. Journal of Paleontology 54: 1163–1183.
  • Krause, D.W. 1982. Multituberculates from the Wasatchian Land-Mammal Age, early Eocene of western North America. Journal of Paleontology 56: 271–294.
  • Krause, D.W. 2013. Gondwanatheria and ?Multituberculata (Mammalia) from the Late Cretaceous of Madagascar. Canadian Journal of Earth Sciences 50: 324–340.
  • Krause, D.W. 2014. Dental Morphology of Vintana sertichi (Mammalia, Gondwanatheria) from the Late Cretaceous of Madagascar. Journal of Vertebrate Paleontology 34 (Supplement 1): 137–165.
  • Krause, D.W. and Bonaparte, J.F. 1993. Superfamily Gondwanatherioidea: A previously unrecognized radiation of multituberculate mammals in South America. Proceedings of the National Academy of Sciences 90: 9379–9383.
  • Krause, D.W., Gottfried, M.D., O’Connor, P.M., and Roberts, E.M. 2003. A Cretaceous mammal from Tanzania. Acta Palaeontologica Polonica 48: 321–330.
  • Krause, D.W., Hoffmann, S., and Werning, S. 2017. First postcranial remains of Multituberculata (Allotheria, Mammalia) from Gondwana. Cretaceous Research 80: 91–100.
  • Krause, D.W., Hoffmann, S., Wible, J.R., Kirk, E.C., Schultz, J.A., Koenigswald, W. von, Groenke, J.R., Rossie, J.B., O’Connor, P.M., Seiffert, E.R., Dumont, E.R., Holloway, W.L., Rogers, R.R., Rahantarisoa, L.J., Kemp, A.D., and Andriamialison, H. 2014. First cranial remains of a gondwanatherian mammal reveal remarkable mosaicism. Nature 515: 512–517.
  • Krause, D.W., Hoffmann, S., Wible, J.R., Rougier, J., and Hu, Y. 2018. Lower jaw morphology of a new gondwanatherian mammal from the Late Cretaceous of Madagscar. In: A. Farke, A. MacKenzie, and J. Miller- Camp (eds.), 78th Annual Meeting Society of Vertebrate Paleontology, Program and Abstracts, 162. Society of Vertebrate Paleontology, Albuquerque. [published online, http://vertpaleo.org/Annual-Meeting/Annual-Meeting-Home/SVP-2018-program-bookV4-FINAL-with-covers-9-24-18.aspx]
  • Krause, D.W., Kielan-Jaworowska, Z., and Bonaparte, J.F. 1992. Ferugliotherium Bonaparte, the first known multituberculate from South America. Journal of Vertebrate Paleontology 12: 351–376.
  • Krause, D.W., Prasad, G.V.R., Koenigswald, W. von, Sahni, A., and Grine, F.E. 1997. Cosmopolitanism among Gondwanan Late Cretaceous mammals. Nature 390: 504–507.
  • Lehmann, T. 2009. Phylogeny and systematics of the Orycteropodidae (Mammalia, Tubulidentata). Zoological Journal of the Linnean Society 155: 649–702.
  • Linnaeus, C. 1758. Systema naturæ per regna tria naturæ, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Tomus I. Editio decima, reformata. 824 pp. Salvius, Stockholm.
  • Luo, Z.-X. and Wible, J.R. 2005. A late Jurassic digging mammal and early mammalian diversification. Science 308: 103–107.
  • Luo, Z.-X., Kielan-Jaworowska, Z., and Cifelli, R.L. 2002. In quest for a phylogeny of Mesozoic mammals. Acta Palaeontologica Polonica 47: 1–78.
  • Luo, Z.-X., Chen, P.-J., Li, G., and Chen, M. 2007a. A new eutriconodont mammal and evolutionary development of early mammals. Nature 446: 288–293.
  • Luo, Z.-X., Gatesy, S.M., Jenkins Jr., F.A., Amaral, W.W., and Shubin, N.H. 2015. Mandibular and dental characteristics of Late Triassic mammaliaform Haramiyavia and their ramifications for basal mammal evolution. Proceedings of the National Academy of Sciences of the United States of America 112: E7101–E7109.
  • Luo, Z.-X., Ji, Q., and Yuan, C.-X. 2007b. Convergent dental adaptations in pseudo-tribosphenic and tribosphenic mammals. Nature 450: 93–97.
  • Luo, Z.-X., Meng, Q.-J., Grossnickle, D.M., Liu, D., Neander, A.I., Zhang, Y.-G., and Ji, Q. 2017. New evidence for mammaliaform ear evolution and feeding adaptation in a Jurassic ecosystem. Nature 548: 326–329.
  • Luo, Z.-X., Yuan, C.X., Meng, Q.J., and Ji, Q. 2011. A Jurassic eutherian mammal and divergence of marsupials and placentals. Nature 476: 442–445.
  • Mao, F., Wang, Q., and Meng, J. 2015. A systematic study of tooth enamel microstructures of Lambdopsalis bulla (Multituberculate, Mammalia) —Implications for multituberculate biology and phylogeny. PLoS One 10 (5): e0128243.
  • Mateus, O., Marzola, M., Schulp, A. S., Jacobs, L.L., Polcyn, M.J., Pervov, V., Gonçalves, A.O., and Morais, M.L. 2017. Angolan ichnosite in a diamond mine shows the presence of a large terrestrial mammaliamorph, a crocodylomorph, and sauropod dinosaurs in the Early Cretaceous of Angola. Palaeogeography, Palaeoclimatology, Palaeoecology 471: 220–232.
  • McDonald, H.G. and De Iuliis, G. 2008. Fossil history of sloths. In: S.F. Vizcaíno and W.J. Loughry (eds.), The Biology of the Xenarthra, 39–55. University Press of Florida, Florida.
  • Meng, J., Bi, S., Wang, Y., Zheng, X., and Wang, X. 2014. Dental and mandibular morphologies of Arboroharamiya (Haramiyida, Mammalia): A comparison with other haramiyidans and Megaconus and implications for mammalian evolution. PLoS One 9 (12): e113847.
  • Meng, J., Wang, Y., and Li, C.-K. 2011. Transitional mammalian middle ear from a new Cretaceous Jehol eutriconodont. Nature 472: 181–185.
  • Meredith, R.W., Gatesy, J., Murphy, W.J., Ryder, O.A., and Springer, M.S. 2009. Molecular decay of the tooth gene enamelin (ENAM) mirrors the loss of enamel in the fossil record of placental mammals. PLoS Genetics 5(9): e1000634.
  • Miao, D. 1993. Cranial morphology and multituberculate relationships. In: F.S. Szalay, M.J. Novacek, and M.C. McKenna (eds.), Mammal Phylogeny: Mesozoic Differentiation, Multituberculates, Monotremes, Early Therians, and Marsupials, 63–74. Springer, New York.
  • Mones, A. 1987. Gondwanatheria, un nuevo orden de Mamíferos Sudamericanos (Mammalia: Edentata: ?Xenarthra). Comunicaciones Paleontológicas del Museo de Historia Natural de Montevideo 18: 237–240.
  • Nanci, A. and Somerman, M. 2003. The periodontium. In: A. Nancy (ed.), Ten Cate’s Oral Histology: Development, Structure, and Function, 245–251. Harcourt Health Sciences, St. Louis.
  • Nessov, L.A., Zhegallo, V.I., and Averianov, A.O. 1998. A new locality of Late Cretaceous snakes, mammals and other vertebrates in Africa (western Libya). Annales de Paléontologie 84: 265–274.
  • O’Connor, P.M., Gottfried, M.D., Stevens, N.J., Roberts, E.M., Ngasala, S., Kapilima, S., and Chami, R. 2006. A new vertebrate fauna from the Cretaceous Red Sandstone Group, Rukwa Rift Basin, Southwestern Tanzania. Journal of African Earth Science 44: 277–288.
  • O’Connor, P.M., Sertich, J.J., Stevens, N.J., Roberts, E.M., Gottfried, M.D., Hieronymus, T.L., Jinnah, Z.A., Ridgely, R., Ngasala, S.E., and Temba, J. 2010. The evolution of mammal-like crocodyliforms in the Cretaceous Period of Gondwana. Nature 466: 748–751.
  • Pascual, R., Goin, F.J., Krause, D.W., Ritz-Jaureguizar, E., and Carlini, A.A. 1999. The first gnathic remains of Sudamerica: implications for gondwanathere relationships. Journal of Vertebrate Paleontology 19: 373–382.
  • Patterson, B. 1978. Pholidota and Tubulidentata. In: V.J. Maglio and H.B.S. Cooke (eds.), Evolution of African Mammals, 268–278. Harvard University Press, Cambridge. Paula Couto, C. de 1967. Pleistocene edentates of the West Indies. American Museum Novitates 2304: 1–55.
  • Prasad, G.V.R., Verma, O., Sahni, A., Krause, D.W., Khosla, A., and Parmar, V. 2007. A new Late Cretaceous gondwanatherian mammal from central India. Proceedings of the Indian National Science Academy 73: 17–24.
  • Rage, J.-C., and Cappetta, H. 2002. Vertebrates from the Cenomanian, and the geological age of the Draa Ubari fauna (Libya). Annales de Paléontologie 88: 79–84.
  • Rich, T.H., Hopson, J.A., Gill, P.G., Trusler, P., Rogers-Davidson, S., Morton, S., Cifelli, R.L., Pickering, D., Kool, L., Siu, K., Burgmann, F.A., Senden, T., Evans, A.R., Wagstaff, B.E., Seegets-Villiers, D., Corfe, I.J., Flannery, T.F., Walker, K., Musser, A.M., Archer, M., Pian, R., and Vickers-Rich, P. 2016. The mandible and dentition of the Early Cretaceous monotreme Teinolophos trusleri. Alcheringa 40: 475–501.
  • Renvoisé, E. and Michon, F. 2014. An evo-devo perspective on ever-growing teeth in mammals and dental stem cell maintenance. Frontiers in Physiology 5: 1–12.
  • Roberts, E.M., O’Connor, P.M., Stevens, N.J., Gottfried, M.D., Jinnah, Z.A., Ngasala, S., Choh, A.M., and Armstrong, R.A. 2010. Sedimentology and depositional environments of the Red Sandstone Group, Rukwa Rift Basin, southwestern Tanzania: New insight into Cretaceous and Paleogene terrestrial ecosystems and tectonics in sub-equatorial Africa. Journal of African Earth Sciences 57: 179–212.
  • Rose, K.D. 1978. A new Paleocene epoicotheriid (Mammalia), with comments on the Palaeanodonta. Journal of Paleontology 52: 658–674.
  • Rose, K.D. and Lucas, S.G. 2000. An early Paleocene palaeanodont (Mammalia, ?Pholidota) from New Mexico, and the origin of Palaeanodonta. Journal of Vertebrate Paleontology 20: 139–156.
  • Rose, K.D., Eberle, J.J., and McKenna, M.C. 2004. Arcticanodon dawsonae, a primitive new palaeanodont from the lower Eocene of Ellesmere Island, Canadian High Arctic. Canadian Journal of Earth Sciences 41: 757–763.
  • Rose, K.D., Emry, R.J., and Gingerich, P.D. 1992. Skeleton of Alocodontulum atopum, an early Eocene epoicotheriid (Mammalia, Palaeanodonta) from the Bighorn Basin, Wyoming. Contributions from the Museum of Paleontology, University of Michigan 28: 221–245.
  • Rose, K.D., Emry, R.J., Gaudin, T.J., and Storch, G. 2005. Xenarthra and Pholidota. In: K.D. Rose and J.D. Archibald (eds.), The Rise of Placental Mammals: Origins and Relationships of the Major Extant Clades, 106–126. Johns Hopkins University Press, Baltimore.
  • Rougier, G.W., Chornogubsky, L., Casadio, S., Arango, N.P., and Giallombardo, A. 2009. Mammals from the Allen Formation, Late Cretaceous, Argentina. Cretaceous Research 30: 223–238.
  • Rougier, G.W., Novacek, M.J., McKenna, M.C., and Wible, J.R. 2001. Gobiconodonts from the Early Cretaceous of Oshih (Ashile), Mongolia. American Museum Novitates 3348: 1–30.
  • Rowe, T. 1988. Definition, diagnosis, and origin of Mammalia. Journal of Vertebrate Paleontology 8: 241–264.
  • Rowe, T., Rich, T.H., Vickers-Rich, P., Springer, M., and Woodburne, M.O. 2008. The oldest platypus and its bearing on divergence timing of the platypus and echidna clades. Proceedings of the National Academy of Sciences 105: 1238–1242.
  • Scillato-Yané, G.J. and Pascual, R. 1984. Un peculiar Paratheria, Edentata (Mammalia) del Paleoceno de Patagonia. In: Primeras Jornadas Argentinas de Paleontología de Vertebrados Resúmenes, 15.
  • Secord, R., Ginerich, P.D., and Bloch, J.I. 2002. Mylanodon rosei, a new metacheiromyid (Mammalia: Palaeanodonta) from the late Tiffanian (late Paleocene) of northwestern Wyoming. Contributions from the Museum of Paleontology, The University of Michigan 30: 385–399.
  • Seiffert, E.R. 2007. A new estimate of afrotherian phylogeny based on simultaneous analysis of genomic, morphological, and fossil evidence. BMC Evolutionary Biology 7: 224.
  • Shoshani, J., Goldman, C.A., and Thewissen, J.G.M. 1988. Orycteropus afer. Mammalian Species 300: 1–8.
  • Sigogneau-Russell, D. 1989. Haramiyidae (Mammalia, Allotheria) en provenance du Trias Supérieur de Lorraine (France). Palaeontographica, Abteilung A 206: 137–198.
  • Sigogneau-Russell, D., Evans, S.E., Levine, J.F., and Russell, D.A. 1998. The Early Cretaceous microvertebrate locality of Anoual, Morocco: a glimpse at the small vertebrate assemblages of Africa. In: S.G. Lucas, J.I. Kirkland, and J.W. Estep (eds.), Lower and Middle Cretaceous Terrestrial Ecosystems. New Mexico Museum of Natural History and Science Bulletin 14: 177–182.
  • Simpson, G.G. 1928. A Catalogue of the Mesozoic Mammalia in the Geological Department of the British Museum. 216 pp. British Museum (Natural History), London.
  • Simpson, G.G. 1931. Metacheiromys and the Edentata. Bulletin of the American Museum of Natural History 59: 295–381.
  • Tummers, M. and Thesleff, I. 2008. Observations on continuously growing roots of the sloth and the K14-Eda transgenic mice indicate that epithelial stem cells can give rise to both the ameloblast and root epithelium cell lineage creating distinct tooth patterns. Evolution and Development 10: 187–195.
  • Tummers, M. and Thesleff, I. 2009. The importance of signal pathway modulation in all aspects of tooth development. Journal of Experimental Zoolology 312B: 187–195.
  • Ungar, P.S. 2010. Mammalian Teeth: Origin, Evolution, and Diversity. 304 pp. Johns Hopkins University Press, Baltimore.
  • Widlansky, S.J., Clyde, W.C., O’Connor, P.M., Roberts, E.M., and Stevens, N.J. 2018. Paleomagnetism of the Cretaceous Galula Formation and implications for vertebrate evolution. Journal of African Earth Sciences 139: 403–420.
  • Wilson, G.P., Sarma, D.C.D., and Anantharaman, S. 2007. Late Cretaceous sudamericid gondwanatherians from India with paleobiogeographic considerations of Gondwanan mammals. Journal of Vertebrate Paleontology 27: 521–531.
  • Zheng, X., Bi, S., Wang, X., and Meng, J. 2013. A new arboreal haramiyid shows the diversity of crown mammals in the Jurassic Period. Nature 500: 199–202.
  • Zhou, C.-F., Wu, S., Martin, T., and Luo, Z.-X. 2013. A Jurassic mammaliaform and the earliest mammalian evolutionary adaptations. Nature 500: 163–168.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-d3d29145-3b61-4393-962b-5046ac96f351
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.