PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 26 | 2 |

Tytuł artykułu

Absorption behaviours of copper, lead, and arsenic in aqueous solution using date palm fibres and orange peel: kinetics and thermodynamics

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In this study, date palm fibres and orange peel in both individual and hybrid forms were studied for the removal of copper, lead, and arsenic. Equilibrium was achieved after 150 minutes, and the highest and the lowest removal efficiencies were for Cu⁺² and As(V), respectively. A slightly higher removal efficiency of metal ions using orange peel was observed, which could be due to the greater number of functional groups on the chemically pre-treated adsorbent. The highest removal was observed at pH 6, and the adsorption data exhibited a linear increase in metal removal capacity with increasing adsorbent concentrations from 0.1 to 2 g/L. A significantly higher removal efficiency was observed for a 45 µm particle size compared to larger particle sizes. Additionally, a 30-40% decrease in removal efficiencies was observed for all three heavy metal ions when using the date palm fibres or the hybrid adsorbent when the initial metal concentrations were increased from 20 to 80 mg/L. The Freundlich model agreed with the experimental data slightly better than the Langmuir model for both date palm fibres and the hybrid adsorbent. A pseudo second-order kinetic model better described the kinetic behaviour of As(V) adsorption on the investigated adsorbents. Date palm fibres exhibited exothermic adsorption, while both orange peel and the hybrid adsorbent displayed exothermic and endothermic reactions. Increased randomness at the solid-liquid interface was observed for all adsorbents, and the Gibbs free energy change values were negative, confirming the spontaneous nature of adsorption, which proceeded in the forward direction.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

26

Numer

2

Opis fizyczny

P.543-557,fig.,ref.

Twórcy

autor
  • Alamoudi Water Research Chair, King Saud University, P.O. Box 2460, Riyadh 11451, Kingdom of Saudi Arabia
autor
  • Alamoudi Water Research Chair, King Saud University, P.O. Box 2460, Riyadh 11451, Kingdom of Saudi Arabia
autor
  • Department of Civil and Environmental Engineering, College of Engineering, King Faisal University, P.O. Box 380, Al-Hofuf, Al-Ahsa 31982, Kingdom of Saudi Arabia

Bibliografia

  • 1. Peng S.H., Wang W.X., Li X., Yen Y.F. Metal partitioning in river sediments measured by sequential extraction and biomimetic approaches. Chemosphere 57, 839, 2004.
  • 2. Khan S., Cao Q., Zheng Y.M., Huang Y. Z., Zhu Y.G. Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environ. Pollut. 152, 686, 2008.
  • 3. Sud D., Mahajan G., Kaur M.P. Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions – A review. Bioresour. Technol. 99, 6017, 2008.
  • 4. Hlihor R.M., Gavrilescu M. Removal of some environmentally relevant heavy metals using low-cost natural sorbents. Environ. Eng. Manage. J. 8, 353, 2009.
  • 5. Jamil M., Zia M.S., Qasim M. Contamination of agro-ecosystem and human health hazards from wastewater used for irrigation. J. Chem. Soc. Pak. 32, 370, 2010.
  • 6. Singh A., Sharma R.K., Agrawal M., Marshall F.M. Health risk assessment of heavy metals via dietary intake of foodstuffs from the wastewater irrigated site of a dry tropical area of India. Food Chem. Toxicol. 48, 611, 2010.
  • 7. Hossain M.A., Ngo H.H., Guo W.S. Performance of cabbage and cauliflower wastes for heavy metals removal. Desalin. Water Treat. 52, 844, 2014.
  • 8. Varga M., Takács M., Záray G., Varga I. Comparative study of sorption kinetics and equilibrium of chromium (VI) on charcoals prepared from different lowcost materials. Microchem. J. 107, 25, 2013.
  • 9. Pamukoglu M.Y., Karachi F. Removal of copper (II) ions from aqueous medium by absorption onto powdered waste sludge. Process Biochem. 41, 1047, 2006.
  • 10. Gupta V.K., Rastogi A. Absorption of lead from aqueous solutions by green algae Spirogyra species: Kinetics and equilibrium studies. J. Hazard Mater. 152, 407, 2008.
  • 11. Popescu G., Dumitru T. Biosorption of some heavy metals from media with high salt concentrations by Halophilic archaea. Biotechnol. Biotechnol. Equip. 23, 791, 2009.
  • 12. Fu F., Wang Q. Removal of heavy metal ions from wastewaters: A review. J. Environ. Manage. 92, 407, 2011.
  • 13. Rathinam A., Maharshi B., Janardhanan S.K., Jonnalagadda R.R., Nair B.U. Biosorption of cadmium metal ion from simulated wastewaters using Hypnea Valencia biomass: A kinetic and thermodynamic study. Bioresour. Technol. 101, 1466, 2010.
  • 14. Auta M., Hameed B.H. Coalesced Chitosan activated carbon composite for batch and fixed-bed adsorption of cationic and anionic dyes. Colloids Surf. B. 105, 199, 2013.
  • 15. Galán J., Rodríguez A., Gómez J.M., Allen S.J., Walker G.M. Reactive dye adsorption onto a novel mesoporous carbon. Chem. Eng. J. 219, 62, 2013.
  • 16. Ismail B., Hussain S.T., Akram S. Adsorption of methylene blue onto spinel magnesium aluminate nanoparticles: Adsorption isotherms, kinetic and thermodynamic studies. Chem. Eng. J. 219, 395, 2013.
  • 17. Uzunoğlu D., Gurel N., Ozkaya N., Ozer A. The single batch absorption of copper (II) ions on Sargassum acinarum. Desalin. Water Treat. 52, 1514, 2014.
  • 18. Al Bsoul A., Zeatoun L., Abdelhay A., Chiha M. Adsorption of copper ions from water by different types of natural seed materials. Desalin. Water Treat. 52, 5876, 2014.
  • 19. Aydin H., Bulut Y., Yerlikaya C. Removal of copper (II) from aqueous solution by adsorption onto low-cost adsorbents. J. Environ. Manage. 87, 37, 2008.
  • 20. Putra W.P., Kamari A., Yusoff S.N.M., Ishak C.F., Mahamed A., Hashim N., Isa I.M. Biosorption of Cu (II), Pb (II) and Zn (II) Ions from Aqueous Solutions Using Selected Waste Materials: Adsorption and Characterisation Studies. J. Encapsulation Adsorpt. Sci. 04, 25, 2014.
  • 21. Hsu T.C. Experimental assessment of adsorption of Cu²⁺ and Ni²⁺ from aqueous solution by oyster shell powder. J. Hazard Mater. 171, 995, 2009.
  • 22. Xueyan G., Zhang S., Shan X.Q. Adsorption of metal ions on lignen. J. Hazard. Mater. 151, 134, 2008.
  • 23. Ertugay N., Bayhan Y.K. The removal of copper (II) ion by using mushroom biomass (Agaricus bisporus) and kinetic modelling. Desalination 255, 137, 2010.
  • 24. Ciesielczyk F., Bartczak P., Jesionowski T. Removal of nickel(II) and cadmium(II) ions from aqueous solutions using an oxide adsorbent of MgO·SiO₂ type. Desalin. Water Treat. 55 (5), 1271, 2015.
  • 25. Klapiszewski L., Bartczak P., Wysokowski M., Jankowska M., Kabat K., Jesionowski T. Silica conjugated with kraft lignin and its use as a novel ‘green’ sorbent for hazardous metal ions removal. Chem. Eng. J. 260, 684, 2015.
  • 26. Jusoh A., Su Shiung L., Ali N.A., Noor M.J.M.M. A simulation study of the removal efficiency of granular activated carbon on cadmium and lead. Desalination 206, 9, 2007.
  • 27. Kang K.C., Kim S.S., Choi J.W., Kwon S.H. Sorption of Cu (II)‏ and Cd (II)‏ onto acid and base-pretreated granular activated carbon and activated carbon fiber samples. J. Ind. Eng. Chem. 14, 131, 2008.
  • 28. Kurniawan T.A., Chan G.Y.S., Lo W., Babel S. Comparisons of low-cost adsorbents for treating wastewaters laden with heavy metals. Sci. Total Environ. 366, 409, 2006.
  • 29. Chiban M., Carja G., Lehutu G., Sinan F. Equilibrium and thermodynamic studies for the removal of As (V) ions from aqueous solution using dried plants as adsorbents. Arab J. Chem. In press (doi:10.1016/j. arabjc.2011.10.002), 2011.
  • 30. Altaher H. Preliminary study of the effect of using biosorbents on the pollution of the treated water. Global Nest J. 16 (4), 707, 2014.
  • 31. Bartczak P., Norman M., Klapiszewski L., Karwańska N., Kawalec M., Baczyńska M., Wysokowski M., Zdarta J., Ciesielczyk F., Jesionowski T. Removal of nickel(II) and lead(II) ions from aqueous solution using peat as a low-cost adsorbent: A kinetic and equilibrium study. Arabian J. Chem. In press (doi:10.1016/j.arabjc.2015.07.018), 2015.
  • 32. Haleem A.M., Abdulgafoor E.A. The Biosorption of Cr(VI) From Aqueous Solution Using Date Palm Fibers (Leef). Al-Khwarizmi Eng. J. 6, 31, 2010.
  • 33. Al-Haidary A.M.A., Zanganah F.H.H., Al-zawi S.R.F. Khalili F.I., Al-Dujaili A.H. A Study on Using Date Palm Fibers and Leaf Base of Palm as Adsorbents for Pb(II) Ions from Its Aqueous Solution. Water Air Soil Poll. 214, 73, 2011.
  • 34. Belala Z., Jeguirim M., Belhachemi M. Biosorption of copper from aqueous solutions by date stones and palm-trees waste. Environ. Chem. Lett. 9, 65, 2011.
  • 35. Boudrahem F., Aissani-Benissad F., Soualah A. Adsorption of Lead(II) from Aqueous Solution by Using Leaves of Date Trees As an Adsorbent. J. Chem. Eng. Data 56, 1804, 2011.
  • 36. Ghorbani F., Sanati A.M., Younesi H., Ghoreyshi A.A. The potential of date-palm leaf ash as low-cost adsorbent for the removal of Pb(ii) ion from aqueous solution. Int. J. Eng. Trans. B Appl. 25, 269, 2012.
  • 37. Al-Ghamdi A., Altaher H., Omar W. Application of date palm trunk fibers as adsorbents for removal of Cd⁺² ions from aqueous solutions. J. Water Reuse. Desal. 3, 47, 2013.
  • 38. Liang S., Guo X., Feng N., Tian Q. Effective removal of heavy metals from aqueous solutions by orange peel xanthate. Trans. Nonferrous Met. Soc. China 20, 187, 2010.
  • 39. Gupta V.K., Nayak A. Cadmium removal and recovery from aqueous solutions by novel adsorbents prepared from orange peel and Fe₂O₃ nanoparticles. Chem Eng J. 180, 81, 2012.
  • 40. Lasheen M.R., Ammar N.S., Ibrahim H.S. Adsorption/desorption of Cd(II), Cu(II) and Pb(II) using chemically modified orange peel. Equilibrium and kinetic studies. Solid State Sci. 14, 202, 2012.
  • 41. Macedo S., Otubo L., Ferreira O.P., Gimenez I.F., Mazali I. O., Barreto L.S. Biomorphic activated porous carbons with complex micro- structures from lignocellulosic residues. Micropor. Mesopor. Mat. 107, 276, 2008.
  • 42. Vansant E.F., Voort P.V.D., Vrancken K.C. Characterization and Chemical Modification of the Silica Surface. Elsevier, Netherlands, 1995.
  • 43. Gebrehawaria G., Hussen A., Rao V.M. Removal of hexavalent chromium from aqueous solutions using barks of Acacia albida and leaves of Euclea schimperi. Int. J. Environ. Sci. Technol. 12, 1569, 2015.
  • 44. Zhang Z., O’Hara I.M., Kent G.A., DohertyW.O.S. Comparative study on adsorption of two cationic dyes by milled sugarcane bagasse. Ind. Crops Prod. 42, 41, 2013.
  • 45. Ghimire K.N., Inoue K., Yamaguchi H., Makino K., Miyajima T. Adsorptive separation of arsenate and arsenite anions from aqueous medium by using orange waste. Water Res. 37, 4945, 2003.
  • 46. Guibaud G., Tixier N., Bouju A., Baudu M. Relation between extracellular polymers’ composition and its ability to complex Cd, Cu and Pb. Chemosphere 52, 1701, 2003.
  • 47. Krishnan K.A., Anirudhan T.S. Removal of cadmium (II) from aqueous solutions by steam-activated sulphurised carbon prepared from sugar cane bagasse pith: kinetics and equilibrium studies. Water SA. 29 (2), 147, 2003.
  • 48. Ho Y.S., Ng J.C.Y., Mckay G. Kinetics of pollutant sorption by biosorbents: review. Sep. Purif. Rev. 29 (2), 189, 2000.
  • 49. Qadeer R., Akhtar S. Kinetics study of lead ion adsorption on active carbon. Turk. J. Chem. 29, 95, 2005.
  • 50. Abia A.A., Horsfall M., Didi O. Studies on the use of agricultural by-product for the removal of trace metals from aqueous solutions. J. Appl. Sci. Environ. Manage. 6 (2), 89, 2002.
  • 51. Areco M.M., Dos Santos A.M. Copper, zinc, cadmium and lead biosorption by Gymnogongrus torulosus. Thermodynamics and kinetics studies. Colloids Surf. B. 81, 620, 2010.
  • 52. El-Bindary A.A., Hussien M.A., Diab M.A., Eessa A.M. Adsorption of Acid Yellow 99 by polyacrylonitrile/activated carbon composite: Kinetics, thermodynamics and isotherm studies. J. Mol. Liq. 197, 236, 2014.
  • 53. Chieng H.I., Lim L.B.L., Priyantha N. Enhancing adsorption capacity of toxic malachite green dye through chemically modified breadnut peel: equilibrium, thermodynamics, kinetics and regeneration studies. Environ. Technol. 36, 86, 2015.
  • 54. Al-Ghouti M.A., Li J., Salamh Y., Al-Laqtah N., Walker G., Ahmad M.N.M. Adsorption mechanisms of removing heavy metals and dyes from aqueous solution using date pits solid adsorbent. J. Hazard. Mater. 176 (1-3), 510, 2010.
  • 55. Al-Homaidan A.A., Al-Houri H.J., Al-Hazzani A.A., Elgaaly G., Moubayed N.M.S. Biosorption of copper ions from aqueous solutions by Spirulina platensis biomass. Arab. J. Chem. 7, 57, 2014.
  • 56. Hameed B.H., Chin L.H., Rengaraj S. Adsorption of 4-chlorophenol onto activated carbon prepared from rattan sawdust. Desalination 225, 185, 2008.
  • 57. Rehman M.S., Kim I., Han J.-I. Adsorption of methylene blue dye from aqueous solution by sugar extracted spent rice biomass. Carbohydr. Polym. 90, 1314, 2012.
  • 58. Tahir S.S., Rauf N. Removal of a cationic dye from aqueous solutions by adsorption onto bentonite clay. Chemosphere 63, 1842, 2006.
  • 59. Ahmaruzzaman M., Gayatri S.L. Activated Tea Waste as a Potential Low-Cost Adsorbent for the Removal of p-Nitrophenol from Wastewater. J. Chem. Eng. Data 55, 4614, 2010.
  • 60. El-Ashtoukhy E.-S.Z., Amin N.K., Abdelwahab O. Removal of lead (II) and copper (II) from aqueous solution using pomegranate peel as a new adsorbent. Desalination, European Desalination Society and Center for Research and Technology Hellas (CERTH), Sani Resort 22–25 April 2007, Halkidiki, GreeceEuropean Desalination Society and Center for Research and Technology Hellas (CERTH), Sani Resort 223, 162, 2008.
  • 61. Amarasinghe B.M.W.P.K., Williams R.A. Tea waste as a low cost adsorbent for the removal of Cu and Pb from wastewater. Chem. Eng. J. 132, 299, 2007.
  • 62. Ghimire K.N., Inoue K., Makino K., Miyajima T. Adsorptive Removal of Arsenic Using Orange Juice Residue. Sep. Sci. Technol. 37, 2785, 2002.
  • 63. Ozsoy H.D., Kumbur H. Adsorption of Cu(II) ions on cotton boll. J. Hazard. Mater. 136, 911, 2006.
  • 64. Pehlivan E., Altun T., Cetin S., Bhanger M.I. Lead sorption by waste biomass of hazelnut and almond shell. J. Hazard. Mater. 167, 1203, 2009.
  • 65. Demirbas A. Heavy metal adsorption onto agro-based waste materials: A review. J. Hazard. Mater. 157, 220, 2008.
  • 66. Felicitos N.A., Smith K. An Eco-Friendly approach to remove Arsenic from Agricultural waste. J. Environ. Researh Dev. 1, 331, 2007.
  • 67. Wong K.K., Lee,C.K., Low K.S., Haron M.J. Removal of Cu and Pb from electroplating wastewater using tartaric acid modified rice husk. Process Biochem. 39, 437, 2003.
  • 68. Edokpayi J.N., Odiyo J.O., Msagati T.A.M., Popool, E.O. A Novel Approach for the Removal of Lead(II) Ion from Wastewater Using Mucilaginous Leaves of Diceriocaryum eriocarpum Plant. Sustainability 7, 14026, 2015.
  • 69. Kikuchi Y., Qian Q., Machida M., Tatsumoto H. Effect of ZnO loading to activated carbon on Pb(II) adsorption from aqueous solution. Carbon 44, 195, 2006.
  • 70. Anwar J., Shafique U., Waheed-uz-Zaman, Salman M., Dar A., Anwar S. Removal of Pb(II) and Cd(II) from water by adsorption on peels of banana. Bioresour. Technol. 101, 1752, 2010.
  • 71. Putra W.P., Kamari A., Yusoff S.N.M., Ishak C.F., Mohamed A., Hashim N., Isa I.M. Biosorption of Cu, (II), Pb(II), Ni(II), and Fe(II) on Alkali Treated Coir Fibers. Sep. Sci. Technol. 48, 421, 2013.
  • 72. Ajmal M., Rao R.A.K., Ahmad R., Ahmad J. Adsorption studies on Citrus reticulata (fruit peel of orange): removal and recovery of Ni(II) from electroplating wastewater. J. Hazard. Mater. 79, 117, 2000.
  • 73. Hossain M.F. Arsenic contamination in Bangladesh-An overview. Agric. Ecosyst. Environ. 113, 1, 2006.
  • 74. Reddad Z., Gerente C., Andres Y., Le Cloirec P. Adsorption of Several Metal Ions onto a Low-Cost Biosorbent: Kinetic and Equilibrium Studies. Environ. Sci. Technol. 36, 2067, 2002.
  • 75. Yadav S. K., Singh D.K., Sinha S. Adsorption study of lead(II) onto xanthated date palm trunk: kinetics, isotherm and mechanism. Desalin. Water Treat. 51, 6798, 2013.
  • 76. Nabil G.M., El-Mallah N.M., Mahmoud M.E. Enhanced decolorization of reactive black 5 dye by active carbon sorbent-immobilized-cationic surfactant (AC-CS). J. Ind. Eng. Chem. 20 (3), 994, 2014.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-d29e298b-e814-4140-9b01-1304603d89e4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.