PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 37 | 08 |

Tytuł artykułu

Oligochitosan and sodium alginate enhance stilbene production and induce defense responses in Vitis vinifera cell suspension cultures

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Vitis vinifera L. cv. Cabernet Sauvignon cell suspension cultures were treated with oligochitosan (OCS) and sodium alginate (NaAlg) at various concentrations for different exposure times to investigate the effects on stilbene biosynthesis. In this study, adding optimal concentrations of OCS (100 mg l-1) and NaAlg (100 mg l-1) significantly enhanced both stilbene production inside the cells and trans-resveratrol accumulation in the culture medium without loss of biomass. OCS and NaAlg markedly increased total intracellular stilbene production (1212.05 ± 36.83 and 990.74 ± 24.24 lg g-1 DW; 96.32 and 60.48 % higher than in untreated cells, respectively), and trans-resveratrol release into the culture medium was induced to the maximum of 3.26 ± 0.14 and 2.76 ± 0.12 mg l-1, respectively. Total phenolics and total flavonoids contents were also highly increased after the application of the two elicitors. The expression levels of genes involved in stilbene and flavonoid biosynthesis were significantly up-regulated in the presence of OCS and NaAlg. Further, the expression levels and enzyme activities of two pathogenesis-related proteins, chitinase and β-1,3- glucanase, were induced after the addition of elicitors. The results suggest that OCS and NaAlg can significantly enhance the production of stilbene in V. vinifera cell cultures and may induce the defense responses by the upregulation of chitinase and β-1,3-glucanase at transcript and enzyme activity levels.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

37

Numer

08

Opis fizyczny

fig.,ref.

Twórcy

autor
  • Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, People’s Republic of China
autor
  • Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, People’s Republic of China
autor
  • Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, People’s Republic of China

Bibliografia

  • Abeles FB, Forrence LE (1970) Temporal and hormonal control of β-1,3-glucanase in Phaseolus vulgaris L. Plant Physiol 45:395–400. doi:10.1104/pp.45.4.395
  • Ahuja I, Kissen R, Bones AM (2012) Phytoalexins in defense against pathogens. Trends Plant Sci 17:73–90. doi:10.1016/j.tplants.2011.11.002
  • Austin MB, Bowman ME, Ferrer JL, Schröder J, Noel JP (2004) An aldol switch discovered in stilbene synthases mediates cyclization specificity of type III polyketide synthases. Chem Biol 11:1179–1194. doi:10.1016/j.chembiol.2004.05.024
  • Aziz A, Poinssot B, Daire X, Adrian M, Bézier A, Lambert B, Joubert JM, Pugin A (2003) Laminarin elicits defense responses in grapevine and induces protection against Botrytis cinerea and Plasmopara viticola. Mol Plant Microbe Interact 16:1118–1128. doi:10.1094/MPMI.2003.16.12.1118
  • Aziz A, Trotel-Aziz P, Dhuicq L, Jeandet P, Couderchet M, Vernet G (2006) Chitosan oligomers and copper sulfate induce grapevine defense reactions and resistance to gray mold and downy mildew. Phytopathology 96:1188–1194. doi:10.1094/PHYTO-96-1188
  • Bhambhani S, Karwasara VS, Dixit VK, Banerjee S (2012) Enhanced production of vasicine in Adhatoda vasica (L.) Nees. cell culture by elicitation. Acta Physiol Plant 34:1571–1578. doi:10.1007/s11738-011-0921-7
  • Bradford MN (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1006/abio.1976.9999
  • Bru R, Sellés S, Casado-Vela J, Belchí-Navarro S, Pedreño MA (2006) Modified cyclodextrins are chemically defined glucan inducers of defense responses in grapevine cell cultures. J Agric Food Chem 54:65–71. doi:10.1021/jf051485j
  • Cabrera JC, Messiaen J, Cambier P, Van Cutsem P (2006) Size, acetylation and concentration of chitooligosaccharide elicitors determine the switch from defence involving PAL activation to cell death and water peroxide production in Arabidopsis cell suspensions. Physiol Plant 127:44–56. doi:10.1111/j.1399-3054.2006.00677.x
  • Cai ZZ, Kastell A, Mewis I, Knorr D, Smetanska I (2012) Polysaccharide elicitors enhance anthocyanin and phenolic acid accumulation in cell suspension cultures of Vitis vinifera. Plant Cell Tissue Organ Cult 108:401–409. doi:10.1007/s11240-011-0051-3
  • Chandía NP, Matsuhiro B, Mejías E, Moenne A (2004) Alginic acids in Lessonia vadosa: partial hydrolysis and elicitor properties of the polymannuronic acid fraction. J Appl Phycol 16:127–133. doi:10.1023/B:JAPH.0000044778.44193.a8
  • Chen YF, Zhan Y, Zhao XM, Guo P, An HL, Du YG, Han YR, Liu H, Zhang YH (2009) Functions of oligochitosan induced protein kinase in tobacco mosaic virus resistance and pathogenesis related proteins in tobacco. Plant Physiol Biochem 47:724–731. doi:10.1016/j.plaphy.2009.03.009
  • Chong J, Poutaraud A, Hugueney P (2009) Metabolism and roles of stilbenes in plants. Plant Sci 177:143–155. doi:10.1016/j.plantsci.2009.05.012
  • Díaz-Mula HM, Serrano M, Valero D (2012) Alginate coatings preserve fruit quality and bioactive compounds during storage of sweet cherry fruit. Food Bioprocess Technol 5:2990–2997. doi:10.1007/s11947-011-0599-2
  • Dixon RA, Paiva NL (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085–1097. doi:10.1105/tpc.7.7.1085
  • Fan B, Shen L, Liu KL, Zhao DY, Yu MM, Sheng JP (2008) Interaction between nitric oxide and hydrogen peroxide in postharvest tomato resistance response to Rhizopus nigricans. J Sci Food Agric 88:1238–1244. doi:10.1002/jsfa.3212
  • Ferri M, Tassoni A, Franceschetti M, Righetti L, Naldrett MJ, Bagni N (2009) Chitosan treatment induces changes of protein expression profile and stilbene distribution in Vitis vinifera cell suspensions. Proteomics 9:610–624. doi:10.1002/pmic.200800386
  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158. doi:10.1016/0014-4827(68)90403-5
  • Ghanim H, Sia CL, Abuaysheh S, Korzeniewski K, Patnaik P, Marumganti A, Chaudhuri A, Dandona P (2010) An antiinflammatory and reactive oxygen species suppressive effects of an extract of Polygonum Cuspidatum containing resveratrol. J Clin Endocrinol Metab 95:E1–E8. doi:10.1210/jc.2010-0482
  • González A, Castro J, Vera J, Moenne A (2013) Seaweed oligosaccharides stimulate plant growth by enhancing carbon and nitrogen assimilation, basal metabolism, and cell division. J Plant Growth Regul 32:443–448. doi:10.1007/s00344-012-9309-1
  • Jacobs AK, Dry IB, Robinson SP (1999) Induction of different pathogenesis-related cDNAs in grapevine infected with powdery mildew and treated with ethephon. Plant Pathol 48:325–336. doi:10.1046/j.1365-3059.1999.00343.x
  • Küpper FC, Kloareg B, Guern J, Potin P (2001) Oligoguluronates elicit an oxidative burst in the brown algal kelp Laminaria digitata. Plant Physiol 125:278–291. doi:10.1104/pp.125.1.278
  • Landi L, Feliziani E, Romanazzi G (2014) Expression of defense genes in strawberry fruits treated with different resistance inducers. J Agric Food Chem 62:3047–3056. doi:10.1021/jf404423x
  • Laporte D, Vera J, Chandia NP, Zuniga EA, Matsuhiro B, Moenne A (2007) Structurally unrelated algal oligosaccharides differentially stimulate growth and defense against tobacco mosaic virus in tobacco plants. J Appl Phycol 19:79–88. doi:10.1007/s10811-006-9114-y
  • Lin WL, Hu XY, Zhang WQ, Rogers WJ, Cai WM (2005) Hydrogen peroxide mediates defence responses induced by chitosans of different molecular weights in rice. J Plant Physiol 162:937–944. doi:10.1016/j.jplph.2004.10.003
  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-DDCT method. Methods 25:402–408. doi:10.1006/meth.2001.1262
  • Luczkiewicz M, Kokotkiewicz A (2012) Elicitation and permeabilisation affect the accumulation and storage profile of phytoestrogens in high productive suspension cultures of Genista tinctoria. Acta Physiol Plant 34:1–16. doi:10.1007/s11738-011-0799-4
  • Ma ZX, Yang LY, Yan HX, Kennedy JF, Meng XH (2013) Chitosan and oligochitosan enhance the resistance of peach fruit to brown rot. Carbohydr Polym 94:272–277. doi:10.1016/j.carbpol.2013. 01.012
  • McCullough ML, Peterson JJ, Patel R, Jacques PF, Shah R, Dwyer JT (2012) Flavonoid intake and cardiovascular disease mortality in a prospective cohort of US adults. Am J Clin Nutr 95:454–464. doi:10.3945/ajcn.111.016634
  • Meng XH, Yang LY, Kennedy JF, Tian SP (2010) Effects of chitosan and oligochitosan on growth of two fungal pathogens and physiological properties in pear fruit. Carbohydr Polym 81:70–75. doi:10.1016/j.carbpol.2010.01.057
  • Morales M, Bru R, García-Carmona F, Barceló AR, Pedreño MA (1998) Effect of dimethyl-b-cyclodextrins on resveratrol metabolism in Gamay grapevine cell cultures before and after inoculation with Xylophilus ampelinus. Plant Cell Tissue Organ Cult 53:179–187. doi:10.1023/A:1006027410575
  • Palomer X, Capdevila-Busquets E, Álvarez-Guardia D, Barroso E, Pallás M, Camins A, Davidson MM, Planavila A, Villarroya F, Vázquez-Carrera M (2013) Resveratrol induces nuclear factorjB activity in human cardiac cells. Int J Cardiol 167:2507–2516. doi:10.1016/j.ijcard.2012.06.006
  • Pastrana-Bonilla E, Akoh CC, Sellappan S, Krewer G (2003) Phenolic content and antioxidant capacity of Muscadine grapes. J Agric Food Chem 51:5497–5503. doi:10.1021/jf030113c
  • Pezet R, Perret C, Jean-Denis JB, Tabacchi R, Gindro K, Viret O (2003) d-viniferin, a resveratrol dehydrodimer: one of the major stilbenes synthesized by stressed grapevine leaves. J Agric Food Chem 51:5488–5492. doi:10.1021/jf030227o
  • Pezet R, Gindro K, Viret O, Spring JL (2004) Glycosylation and oxidative dimerization of resveratrol are respectively associated to sensitivity and resistance of grapevine cultivars to downy mildew. Physiol Mol Plant Pathol 65:297–303. doi:10.1016/j.pmpp.2005.03.002
  • Rahman MH, Hjeljord LG, Aam BB, Sørlie M, Tronsmo A (2015) Antifungal effect of chito-oligosaccharides with different degrees of polymerization. Eur J Plant Pathol 141:147–158.doi:10.1007/s10658-014-0533-3
  • Riha J, Brenner S, Böhmdorfer M, Giessrigl B, Pignitter M, Schueller K, Thalhammer T, Stieger B, Somoza V, Szekeres T, Jäger W (2014) Resveratrol and its major sulfated conjugates are substrates of organic anion transporting polypeptides (OATPs) Impact on growth of ZR-75-1 breast cancer cells. Mol Nutr Food Res 58:1830–1842. doi:10.1002/mnfr.201400095
  • Schube U, Nowicki M, Jogschies P, Blumenauer V, Bechmann I, Serke H (2014) Resveratrol and desferoxamine protect human OxLDL-treated granulosa cell subtypes from degeneration. J Clin Endocrinol Metab 99:229–239. doi:10.1210/jc.2013-2692
  • Tassoni A, Fornale S, FranceschettiM,Musiani F,Michael AJ, Perry B, Bagni N (2005) Jasmonates and Na-orthovanadate promote resveratrol production in Vitis vinifera cv. Barbera cell cultures. New Phytol 166:895–905. doi:10.1111/j.1469-8137.2005.01383.x
  • Theis T, Stahl U (2004) Antifungal proteins: targets, mechanisms and prospective applications. Cell Mol Life Sci 61:437–455. doi:10.1007/s00018-003-3231-4
  • Trotel-Aziz P, Couderchet M, Vernet G, Aziz A (2006) Chitosan stimulates defense reactions in grapevine leaves and inhibits development of Botrytis cinerea. Eur J Plant Pathol 114:405–413. doi:10.1007/s10658-006-0005-5
  • Valero D, Díaz-Mula HM, Zapata PJ, Guillén F, Martínez-Romero D, Castillo S, Serrano M (2013) Effects of alginate edible coating on preserving fruit quality in four plum cultivars during postharvest storage. Postharvest Biol Technol 77:1–6. doi:10.1016/j.postharvbio.2012.10.011
  • Wang WX, Li SG, Zhao XM, Du YG, Lin BC (2008) Oligochitosan induces cell death and hydrogen peroxide accumulation in tobacco suspension cells. Pestic Biochem Physiol 90:106–113. doi:10.1016/j.pestbp.2007.10.003
  • Wang HL, Wang W, Zhang P, Pan QH, Zhan JC, Huang WD (2010) Gene transcript accumulation, tissue and subcellular localization of anthocyanidin synthase (ANS) in developing grape berries. Plant Sci 179:103–113. doi:10.1016/j.plantsci.2010.04.002
  • Wang LJ, Ma L, Xi HF, Duan W, Wang JF, Li SH (2013) Individual and combined effects of CaCl2 and UV-C on the biosynthesis ofresveratrols in grape leaves and berry skins. J Agric Food Chem 61:7135–7141. doi:10.1021/jf401220m
  • Wiese W, Vornam B, Krause E, Kindl H (1994) Structural organization and differential expression of three stilbenesynthase genes located on a 13 kb grapevine DNA fragment. Plant Mol Biol 26:667–677. doi:10.1007/BF00013752
  • Wolfe K, Wu XZ, Liu RH (2003) Antioxidant activity of apple peels. J Agric Food Chem 51:609–614. doi:10.1021/jf020782a
  • Yin H, Zhao XM, Du YG (2010) Oligochitosan: a plant diseases vaccine—a review. Carbohydr Polym 82:1–8. doi:10.1016/j. carbpol.2010.03.066
  • Yin H, Fretté XC, Christensen LP, Grevsen K (2012) Chitosan oligosaccharides promote the content of polyphenols in Greek oregano (Origanum vulgare ssp. hirtum). J Agric Food Chem 60:136–143. doi:10.1021/jf204376j
  • Zhao J, Zhu WH, Hu Q, Guo YQ (2000) Improvement of indole alkaloid production in Catharanthus roseus cell cultures by osmotic shock. Biotechnol Lett 22:1227–1231. doi:10.1023/A: 1005653113794
  • Zhao J, Davis LC, Verpoorte R (2005) Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv 23:283–333. doi:10.1016/j.biotechadv.2005.01.003

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-d2976b69-4530-44d8-9a7a-60e8a1deba33
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.