EN
At present, LNG vessels without reliquefaction plants consume the BOG (boil-off gas) in their engines and the excess is burned in the gas combustion unit without recovering any of its energy content. Excess BOG energy could be captured to produce H2, a fuel with high energy density and zero emissions, through the installation of a reforming plant. Such H2 production would, in turn, require on-board storage for its subsequent consumption in the propulsion plant when navigating in areas with stringent anti-pollution regulations, thus reducing CO2 and SOX emissions. This paper presents a review of the different H2 storage systems and the methods of burning it in propulsion engines, to demonstrate the energetic viability thereof on board LNG vessels. Following the analysis, it is identified that a pressurised and cooled H2 storage system is the best suited to an LNG vessel due to its simplicity and the fact that it does not pose a safety hazard. There are a number of methods for consuming the H2 generated in the DF engines that comprise the propulsion plant, but the use of a mixture of 70% CH4-30% H2 is the most suitable as it does not require any modifications to the injection system. Installation of an on-board reforming plant and H2 storage system generates sufficient H2 to allow for almost 3 days’ autonomy with a mixture of 70%CH4-30%H2. This reduces the engine consumption of CH4 by 11.38%, thus demonstrating that the system is not only energy-efficient, but lends greater versatility to the vessel