PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 63 | 3 |

Tytuł artykułu

Autophagy as a universal intracellular process. A comment on the 2016 Nobel Prize in Physiology or Medicine

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

The 2016 Nobel Prize in Physiology or Medicine was awarded to molecular biologist Yoshinori Ohsumi for his work in the field of autophagy (Greek for “self eating”). This fact has once again directed the attention of many scientists to a common cellular phenomenon occurring in all eukaryotes from yeast to mammals, namely the process by which the cell digests and then recycles its components. Although the phenomenon of autophagy was discovered in mammals, a method for monitoring it by light microscopy was established in the unicellular eukaryote, the budding yeast Saccharomyces cerevisiae. The article describes the achievements of the Nobel Laureate, the mechanism of autophagy and its role in the cell physiology of organisms including the unicellular pathogen, the protozoan Toxoplasma gondii.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

63

Numer

3

Opis fizyczny

p.153-157,ref.

Twórcy

autor
  • Department of Immunoparasitology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland

Bibliografia

  • [1] Klionsky D.J. 2008. Autophagy revisited (A conversation with Christian de Duve). Autophagy 4: 740-743.
  • [2] http://www.nobelprize.org/nobe_prizes/medicine/laureates/2016/press.html
  • [3] Mohammadi D. 2016. 2016 Nobel prize in medicine goes to Japanese scientist. The Lancet 388: 1870. doi:10.1016/S0140-6736(16)31797-4
  • [4] Ohsumi Y. 2012. Autophagy from beginning to end. Journal of Cell Biology. 197: 184-185. doi:10.1083/jcb.1972pi
  • [5] Takeshige K., Baba M., Tsuboi S., Noda T., Ohsumi Y. 1992. Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. The Journal of Cell Biology 119: 301-311.
  • [6] Tsukada M., Ohsumi Y. 1993. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Letters 333: 169-174.
  • [7] Suzuki K., Ohsumi Y. 2007. Molecular machinery of autophagy formation in yeast, Saccharomyces cerevisiae. FEBS Letters 581: 2156-2161.
  • [8] Abounit K., Scarabelli T.M., McCauley R.B. 2012. Autophagy in mammalian cells. World Journal of Biological Chemistry 3: 1-6. doi:10.4331/wjbc.v3.i1.1
  • [9] Chen-Scarabelli C., Agrawal P.R., Saravolatz L., Abuniat C., Scarabelli G., Stephanou A., Loomba L., Narula J., Scarabelli T.M., Knight R. 2014. The role and modulation of autophagy in experimental models of myocardial ischemia-reperfusion injury. Journal of Geriatric Cardiology 11: 338-348. doi:10.11909/j.issn.1671-5411.2014.01.009
  • [10] Nakatogawa H., Ohsumi Y. 2014. Autophagy: close contact keeps out the uninvited. Current Biology 24: R560. doi:10.1016/j.cub.2014.05.013
  • [11] Mizushima N. 2017. Autophagy: process and function. Genes and Development 21: 2861-2873.
  • [12] Levine B., Kroemer G. 2008. Autophagy in the pathogenesis of disease. Cell 132: 27-42. doi:10.1016/j.cell.2007
  • [13] Hakånsson S., Charron A.J., Sibley L.D. 2001. Toxoplasma evacuoles: a two-step process of secretion and fusion forms the parasitophorous vacuole. The EMBO Journal 20: 3132-3144.
  • [14] Gazzinelli R.T., Brezin A., Li Q., Nussenblatt R.B., Chan C.C. 1994. Toxoplasma gondii: acquired ocular toxoplasmosis in the murine model, protective role of TNF-α and IFN-γ. Experimental Parasitology 78: 217-229.
  • [15] Choi J., Park S., Biering S.B., Selleck E., Liu C.Y., Zhang X., Fujita N., Saitoh T., Akira SW., Yoshimori T., Sibley L.D., Hwang S., Virgin H.W. 2015. The parasitophorous vacuole membrane of Toxoplasma gondii is targeted for disruption by ubiquitin-like conjugation systems of autophagy. Immunity 40: 924-935.
  • [16] Lee Y., Sasai M., Ma J.S., Sakaguchi N., Ohshima N., Bando H., Saitoh T., Akira S., Yamamoto M. 2015. P62 plays a specific role in interferon-γ-induced presentation of a Toxoplasma vacuolar antigen. Cell Reports 13: 223-233. doi:10.1016/j.celrep.2015.09.005
  • [17] Subauste C.S., Wessendarp M. 2006. CD40 restrains the in vivo growth of Toxoplasma gondii independently of gamma interferon. Infection and Immunity 74:1573-1579.
  • [18] Reichmann G., Walker W., Villegas E.N., Craig L., Cai G., Alexander J., Hunter C.A. 2000. The CD40/CD40 ligand interaction is required for resistance to toxoplasmic encephalitis. Infection and Immunity 68: 1312-1318.
  • [19] Andrade R.M., Wessendarp M., Gubbels M.J., Striepen B., Subauste C.S. 2006. CD40 induces macrophage anti-Toxoplasma gondii activity by triggering autophagy-dependent fusion of pathogencontaining vacuoles and lysosomes. Journal of Clinical Investigation 116: 2366-2377.
  • [20] Subauste C.S. 2009. CD40, autophagy and Toxoplasma gondii. Memórias do Instituto Oswaldo Cruz 104: 267-272.
  • [21] Subauste C.S. 2009. Autophagy in immunity against Toxoplasma gondii. In: Autophagy in infection and immunity. (Eds. B. Levine et al.). Current Topics in Microbiology and Immunology 335: 252-306. doi:10.1007/978-3-642-00302-8_12
  • [22] Subauste C.S., Wessendarp M., Sorensen R.U., Leiva L. 1999. CD40-CD40 ligand interaction is central to cell-mediated immunity against Toxoplasma gondii: patients with hyper IgM syndrome have a defective type-1 immune response which can be restored by soluble CD40L trimer. Journal of Immunology 162: 6690-6700.
  • [23] Lee Y.-J., Song H.-O., Lee Y.-H., Ryu J.-S., Ahn M.-H. 2013. Proliferation of Toxoplasma gondii suppresses host cell autophagy. Korean Journal of Parasitology 51: 279-287. doi:10.3347/kjp.2013.51.3.279
  • [24] Chu J.-Q., Jing K.-P., Gao9 X., Li P., Huang R., Niu Y.-R.,Yan S.-Q., Kong I.-C.,You C.-Y., Shi G., Fan Y.-M., Lee Y-H., Zhou Y., Quan J.-H. 2017. Toxoplasma gondii induces autophagy and apoptosis in human umbilical cord mesenchymal stem cells via downregulation of Mcl-1. Cell Cycle 16: 477-486. doi:10.1080/15384101.2017.1281484
  • [26] Besteiro S., Brooks C.F., Striepen B., Dubremetz I.-F. 2011. Autophagy protein Atg3 is essential for maintaining mitochondrial integrity and for normal intracellular development of Toxoplasma gondii tachyzoites. PLoS Pathogens 7: e1002416. doi:10.1371/journal.ppat.1002416
  • [27] Besteiro S. 2012. Role of ATG3 in the parasite Toxoplasma gondii. Autophagy 8: 435-437. doi:10.4161/auto.19289
  • [28] Wu H., Che X., Zheng Q., Wu A., Pan K., Shao A., Wu Q., Zhang J., Hong Y. 2014. Caspases: A molecular switch node in the crosstalk between autophagy and apoptosis. International Journal of Biological Sciences 10: 1072-1083. doi:10.7150/ijbs.9719
  • [29] Ghosh D., Walton J.L., Roepe P.D., Sinai A.P. 2012. Autophagy is a cell death mechanism in Toxoplasma gondii. Cellular Microbiology 14: 589-607. doi:10.1111/j.1462-5822.2011.01745.x
  • [30] Cheng Y., Ren X., Hait W.N., Yang J.-M. 2013. Therapeutic targeting of autophagy in disese: biology and pharmacology. Pharmacological Review 65: 1162-1197. doi:10.1124/pr.112.007120

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-d0f57bca-6615-4c6a-a2c6-65a7ec32c5ea
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.