PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2018 | 162 | 04 |

Tytuł artykułu

Dokładność określania świeżej masy strzał jodły na podstawie przeliczników wagowo-objętościowych

Treść / Zawartość

Warianty tytułu

EN
Accuracy of estimation silver fir stem mass on the basis of volume to weight conversion factors

Języki publikacji

PL

Abstrakty

EN
The paper describes the accuracy of estimation of silver fir stem fresh mass on the basis of volume to weight conversion factor, derived from samples, collected from few different places along the stem. The research material contained 13 sample trees selected from homogenous 70−years old stand, situated in mountainous area of the Beskid Sądecki in Polish part of the Carpathians (S Poland). Volume over the bark of sample trees was calculated with section−wise method and the whole stem fresh biomass was directly weighted. For each sample tree three stem discs were collected at ⅙, ½ and ⅚ of tree height, their weight and volume were precisely determined and the biomass conversion factors (equivalent of stem density) were calculated. The assessment of the accuracy of whole fresh stem biomass was conducted according to five variants: for the biomass conversion factors derived from each individual stem disc (lower, middle or upper), from weighted mean density and on the basis of the constructed mixed model, where relative height and diameter were treated as fixed effects and influence of individual trees was included as a random term. The volume of sample fir stems ranged from 0.15 to 2.22 m³, while their fresh biomass varied between 138.1 and 1896.7 kg. Obtained results show that variation of the density was higher within stems than between them (coefficient of variation amounted to 8.4% i 3.3% respectively). The average density increased along stem, from 835.6 kg/m³ for lower part (⅙H) to 986.8 kg/m³ for the upper part (⅚H). Estimating the biomass on the basis of just lower stem disc resulted in the average relative error equal to –5.8%, while for middle stem disc the error was +1.2%, and for upper disc +11.3%. The use of conversion factors derived from weighted average density of all three stem discs resulted in average bias equal to –1,7% with standard error 1,0%. Despite the presence of mean bias of –2.3%, the constructed density model gave the most precise estimation of the stem biomass (standard error 0.7%), which indicates the reasons for its further improvements and usage.

Wydawca

-

Czasopismo

Rocznik

Tom

162

Numer

04

Opis fizyczny

s.277-287,rys.,tab.,bibliogr.

Twórcy

autor
  • Zakład Biometrii i Produkcyjności Lasu, Uniwersytet Rolniczy w Krakowie, al.29 Listopada 46, 31-425 Kraków
autor
  • Zakład Biometrii i Produkcyjności Lasu, Uniwersytet Rolniczy w Krakowie, al.29 Listopada 46, 31-425 Kraków
  • Zakład Biometrii i Produkcyjności Lasu, Uniwersytet Rolniczy w Krakowie, al.29 Listopada 46, 31-425 Kraków
autor
  • Zakład Biometrii i Produkcyjności Lasu, Uniwersytet Rolniczy w Krakowie, al.29 Listopada 46, 31-425 Kraków

Bibliografia

  • Bartelink H. H. 1996. Allometric relationships on biomass and needle area of Douglas-fir. Forest Ecology and Management 86 (1-3): 193-203. DOI: 10.1016/S0378-1127(96)03783-8.
  • Briggs R. D., Cunia T., White E. H., Yawney H. W. 1987. Estimating sample tree biomass by subsampling: some empirical results. W: Wharton E. H., Cunia T. [red.]. Estimating Tree Biomass Regressions and Their Error: Proceedings of the Workshop on Tree Biomass Regression Functions and Their Contribution to the Error of Forest Inventory Estimates. USDA Forest Service: Broomall, PA, U.S. 119-127.
  • Cienciala E., Apltauer J., Exnerová Z., Tatarinov F. 2008. Biomass functions applicable to oak trees grown in Central-European forestry. Journal of Forest Science 54 (3): 109-120.
  • Cutini A., Chianucci F., Manetti M. C. 2013. Allometric relationships for volume and biomass for stone pine (Pinus pinea L.) in Italian coastal stands. iForest – Biogeosciences and Forestry 6 (5): 331-335. DOI: 10.3832/ifor0941-006.
  • Ericsson K., Rosenqvist H., Ganko E., Pisarek M., Nilsson L. 2006. An agro-economic analysis of willow cultivation in Poland. Biomass and Bioenergy 30 (1): 16-27.
  • Good practice guidance for land use, land-use change and forestry. 2003. IPCC.
  • Hakkila P. 1979. Wood density surveys and dry weight tabels for pine, spruce and birch stems in Finland. Communicationes Instituti Forestalis Fenniae 96 (3): 59.
  • Hastie T., Tibshirani R., Friedman J. 2009. The elements of statistical learning: Data mining, inference, and prediction. Springer: New York.
  • Ketterings Q. M., Coe R., Noordwijk M. van, Ambagau’ Y., Palm C. A., van Noordwijk M. 2001. Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests. Forest Ecology and Management 146 (1-3): 199-209. DOI: 10.1016/S0378-1127(00)00460-6.
  • Kleinn C., Pelz D. R. 1987. Subsampling trees for biomass. W: Wharton E. H., Cunia T. [red.]. Estimating Tree Biomass Regressions and their Error: Proceedings of the Workshop on tree Biomass Regression Functions and their Contribution to the Error of Forest Inventory Estimates. USDA Forest Service: Broomall, PA, U.S. 225-227.
  • Liepin¸š J., Ivanovs J., Lazdin¸š A., Jansons J., Liepin¸š K. 2017. Mapping of basic density within European aspen stems in Latvia. Silva Fennica 51 (5): 1-9.
  • Longuetaud F., Mothe F., Fournier M., Dlouha J., Santenoise P., Deleuze C. 2016. Within-stem maps of wood density and water content for characterization of species: a case study on three hardwood and two softwood species. Annals of Forest Science 73 (3): 601-614. DOI: 10.1007/s13595-016-0555-4.
  • Longuetaud F., Mothe F., Santenoise P., Diop N., Dlouha J., Fournier M., Deleuze C. 2017. Patterns of within--stem variations in wood specific gravity and water content for five temperate tree species. Annals of Forest Science 74 (3): 19. DOI: 10.1007/s13595-017-0657-7.
  • Ochał W. 2013. Nadziemna biomasa drzew w młodych drzewostanach olszy czarnej (Alnus glutinosa (L.) Gaertn.). Acta Agraria et Silvestria ser. Sylvestris 51: 75-89.
  • Ochał W., Grabczyński S., Orzeł S., Wertz B., Socha J. 2013. Alokacja nadziemnej biomasy u sosen zajmujących różne pozycje biosocjalne w drzewostanie. Sylwan 157 (10): 737-746.
  • Orzeł S., Forgiel M., Ochał W., Socha J. 2006a. Nadziemna biomasa i roczna produkcja drzewostanów sosnowych Puszczy Niepołomickiej. Sylwan 150 (3): 1-17.
  • Orzeł S., Forgiel M., Socha J., Ochał W. 2005a. Biomass and annual production of common alder stands of the Niepołomice Forest. Electronic Journal of Polish Agricultural Universities 8 (1).
  • Orzeł S., Ochał W., Forgiel M., Socha J. 2006b. Biomasa i roczna produkcja drzewostanów dębowych Puszczy Niepołomickiej. Sylwan 150 (5): 30-43.
  • Orzeł S., Socha J., Forgiel M., Ochał W. 2005b. Biomasa i roczna produkcja drzewostanów mieszanych Puszczy Niepołomickiej. Acta Sci. Pol. Silv. Colendar. Rat. Ind. Lignar. 4 (2): 63-79.
  • Pan Y., Birdsey R. A., Fang J., Houghton R., Kauppi P. E., Kurz W. A., Phillips O. L., Shvidenko A., Lewis S. L., Canadell J. G., Ciais P., Jackson R. B., Pacala S. W., McGuire A. D., Piao S., Rautiainen A., Sitch S., Hayes D. 2011. A large and persistent carbon sink in teh world’s forests. Science 333: 988-994.
  • Parresol B. R. 1999. Assessing tree and stand biomass: a review with examples and critical comparisons. Forest Science 45 (4): 573-593.
  • Peper P. J., McPherson E. G. 1998. Comparision of four foliar and woody biomass estimation methods applied to open-grown deciduous trees. Journal of Arboriculture 24 (4): 191-200.
  • Pérez-Cruzado C., Rodríguez-Soalleiro R. 2011. Improvement in accuracy of aboveground biomass estimation in Eucalyptus nitens plantations: Effect of bole sampling intensity and explanatory variables. Forest Ecology and Management 261 (11): 2016-2028. DOI: 10.1016/j.foreco.2011.02.028.
  • Poudel K. P., Temesgen H. 2016. Methods for estimating aboveground biomass and its components for Douglas-fir and lodgepole pine trees. Canadian Journal of Forest Research 46: 77-87. DOI: 10.1139/cjfr-2015-0256.
  • Repola J. 2006. Models for Vertical Wood Density of Scots Pine, Norway Spruce and Birch Stems, and Their Application to Determine Average Wood Density. Silva Fennica 40 (4): 673-685.
  • Repola J. 2008. Biomass Equations for Birch in Finland. Silva Fennica 42 (4): 605-624.
  • Satoo T., Madgwick H. A. I. 1982. Forest biomass. Martinus Nijhoff/Dr W. Junk Publishers: The Hague.
  • Ter-Mikaelian M. T., Korzukhin M. D. 1997. Biomass equations for sixty-five North American tree species. Forest Ecology and Management 97 (1): 1-24. DOI: 10.1016/S0378-1127(97)00019-4.
  • Valentine H. T., Tritton L. M., Furnival G. M. 1984. Subsampling trees for biomass, volume, or mineral content. Forest Science 30 (3): 673-681.
  • Wassenberg M., Chiu H. S., Guo W., Spiecker H. 2015. Analysis of wood density profiles of tree stems: incorporating vertical variations to optimize wood sampling strategies for density and biomass estimations. Trees – Structure and Function 29 (2): 551-561. DOI: 10.1007/s00468-014-1134-7.
  • West B. T., Welch K. B., Gałecki A. T. 2007. Linear mixed models. A practical guide using statistical software. Statistics in Medicine. DOI: 10.1002/sim.3167.
  • Wiemann M. C., Williamson G. B. 2014. Wood specific gravity variation with height and its implications for biomass estimation. Research Paper FPL-RP-677. Madison.
  • Zianis D., Muukkonen P., Mäkipää R., Mencuccini M. 2005. Biomass and stem volume equations for tree species in Europe. Silva Fennica. The Finnish Society of Forest Science, The Finnish Forest Research Institute Monographs 63.
  • Zianis D., Xanthopoulos G., Kalabokidis K., Kazakis G., Ghosn D., Roussou O. 2011. Allometric equations for aboveground biomass estimation by size class for Pinus brutia Ten. trees growing in North and South Aegean Islands, Greece. European Journal of Forest Research 130 (2): 145-160. DOI: 10.1007/s10342-010-0417-9.
  • Zuur A. F., Ieno E. N., Smith G. M. 2007. Analysing ecological data. Springer, New York.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-d0727955-a47d-48f4-bfa0-260699524b18
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.