PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2018 | 77 | 3 |

Tytuł artykułu

Vascular endothelial growth factor receptor inhibition enhances chronic obstructive pulmonary disease picture in mice exposed to waterpipe smoke

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Background: Chronic obstructive pulmonary disease (COPD) is marked by destruction of alveolar architecture. Preclinical modelling for COPD is challenging. Chronic cigarette smoke exposure, the reference animal model of COPD, is time-inefficient, while exposure to waterpipe smoke (WPS), a surging smoking modality, was not fully tested for its histopathological pulmonary consequences. Since alveolar damage and pulmonary vascular endothelial dysfunction are integral to COPD pathology, lung histopathological effects of WPS were temporally evaluated, alone or in combination with vascular endothelial growth factor receptor (VEGFR) inhibition in mice. Materials and methods: Mice were exposed to WPS, 3 hours/day, 5 days/week, for 1, 2, 3, or 4 months. Another group of mice was exposed to WPS for 1 month, while being subjected to injections with the VEGFR blocker Sugen5416 (SU, 20 mg/kg) 3 times weekly. Control mice were exposed to fresh air in a matching inhalation chamber. Histopathological assessment of COPD was performed. Alveolar destructive index (DI) was counted as the percentage of abnormally enlarged alveoli with damaged septa per all alveoli counted. Mean linear intercept (MLI) was calculated as a measure of airspace enlargement. Results: Exposure to WPS resulted in significant increases in alveolar DI and MLI only after 4 months. Lung inflammatory score was minimal across all time-points. Importantly, combination of WPS and SU resulted in significantly increased DI, MLI, and inflammatory scores as early as 1 month post exposure. Conclusions: Combined exposure to WPS and SU results in COPD picture, highlighting the role of pulmonary vascular endothelial dysfunction in the disease. (Folia Morphol 2018; 77, 3: 447–455)

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

77

Numer

3

Opis fizyczny

p.447–455,fig.,ref.

Twórcy

autor
  • Department of Pharmacology, Faculty of Medicine, Jordan University of Science and Technology, P.O. Box: 3030, Irbid, Jordan 22110
autor
  • Department of Pharmacology, Faculty of Medicine, Jordan University of Science and Technology, P.O. Box: 3030, Irbid, Jordan 22110
autor
  • Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
autor
  • Department of Pathology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
  • Department of Public Health, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
autor
  • Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, Jordan
autor
  • Department of Anatomy, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan

Bibliografia

  • 1. Adeloye D, Chua S, Lee C, et al. Global Health Epidemiology Reference Group (GHERG). Global and regional estimates of COPD prevalence: Systematic review and meta-analysis. J Glob Health. 2015; 5(2): 020415, doi: 10.7189/jogh.05-020415, indexed in Pubmed: 26755942.
  • 2. Alzoubi A, Toba M, Abe K, et al. Dehydroepiandrosterone restores right ventricular structure and function in rats with severe pulmonary arterial hypertension. Am J Physiol Heart Circ Physiol. 2013; 304(12): H1708–H1718, doi: 10.1152/ajpheart.00746.2012, indexed in Pubmed: 23585128.
  • 3. Barberà JA, Peinado VI, Santos S. Pulmonary hypertension in chronic obstructive pulmonary disease. Eur Resp J. 2003; 21(5): 892–905, doi: 10.1183/09031936.03.00115402.
  • 4. Barnes PJ. Chronic obstructive pulmonary disease. N Engl J Med. 2000; 343(4): 269–280, doi: 10.1056/NEJM200007273430407, indexed in Pubmed: 10911010.
  • 5. Barr RG, Mesia-Vela S, Austin JHM, et al. Impaired flowmediated dilation is associated with low pulmonary function and emphysema in ex-smokers: the Emphysema and Cancer Action Project (EMCAP) Study. Am J Respir Crit Care Med. 2007; 176(12): 1200–1207, doi: 10.1164/rccm.200707-980OC, indexed in Pubmed: 17761614.
  • 6. Bartalesi B, Cavarra E, Fineschi S, et al. Different lung responses to cigarette smoke in two strains of mice sensitive to oxidants. Eur Respir J. 2005; 25(1): 15–22, doi: 10.1183/09031936.04.00067204, indexed in Pubmed: 15640318.
  • 7. Beasley R, Weatherall M, Travers J, et al. Time to define the disorders of the syndrome of COPD. Lancet. 2009; 374(9691): 670–672, doi: 10.1016/S0140-6736(09)61541-5, indexed in Pubmed: 19716947.
  • 8. Celli BR, Thomas NE, Anderson JA, et al. Effect of pharmacotherapy on rate of decline of lung function in chronic obstructive pulmonary disease: results from the TORCH study. Am J Respir Crit Care Med. 2008; 178(4): 332–338, doi: 10.1164/rccm.200712-1869OC, indexed in Pubmed: 18511702.
  • 9. Celli BR, Decramer M, Wedzicha JA, et al. An Official American Thoracic Society/European Respiratory Society Statement: Research questions in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2015; 191(7): e4–ee27, doi: 10.1164/rccm.201501-0044ST, indexed in Pubmed: 25830527.
  • 10. Churg A, Cosio M, Wright JL. Mechanisms of cigarette smoke-induced COPD: insights from animal models. Am J Physiol Lung Cell Mol Physiol. 2008; 294(4): L612–L631, doi: 10.1152/ajplung.00390.2007, indexed in Pubmed: 18223159.
  • 11. Ciuclan L, Bonneau O, Hussey M, et al. A novel murine model of severe pulmonary arterial hypertension. Am J Respir Crit Care Med. 2011; 184(10): 1171–1182, doi: 10.1164/rccm.201103-0412OC, indexed in Pubmed: 21868504.
  • 12. Cobb CO, Shihadeh A, Weaver MF, et al. Waterpipe tobacco smoking and cigarette smoking: a direct comparison of toxicant exposure and subjective effects. Nicotine Tob Res. 2011; 13(2): 78–87, doi: 10.1093/ntr/ntq212, indexed in Pubmed: 21127030.
  • 13. Dinh-Xuan AT, Higenbottam TW, Clelland CA, et al. Impairment of endothelium-dependent pulmonary-artery relaxation in chronic obstructive lung disease. N Engl J Med. 1991; 324(22): 1539–1547, doi: 10.1056/NEJM199105303242203, indexed in Pubmed: 2027358.
  • 14. El-Zaatari ZM, Chami HA, Zaatari GS. Health effects associated with waterpipe smoking. Tob Control. 2015; 24 Suppl 1: i31–i43, doi: 10.1136/tobaccocontrol-2014-051908, indexed in Pubmed: 25661414.
  • 15. Fabbri LM, Hurd SS. Global Strategy for the Diagnosis, Management and Prevention of COPD: 2003 update. Eur Respir J. 2003; 22(1): 1–2, doi: 10.1183/09031936.03.00063703.
  • 16. GoCo R, Kress M, Brantigan O. Comparison of mucus glands in the tracheobronchial tree of man and animals*. Ann N Y Acad Sci. 2008; 106(2): 555–571, doi: 10.1111/j.1749-6632.1963.tb16665.x.
  • 17. Hogg JC. Pathophysiology of airflow limitation in chronic obstructive pulmonary disease. Lancet. 2004; 364(9435): 709–721, doi: 10.1016/S0140-6736(04)16900-6, indexed in Pubmed: 15325838.
  • 18. Hogg JC, Chu F, Utokaparch S, et al. The nature of smallairway obstruction in chronic obstructive pulmonary disease. N Engl J Med. 2004; 350(26): 2645–2653, doi: 10.1056/NEJMoa032158, indexed in Pubmed: 15215480.
  • 19. Kasahara Y, Tuder RM, Taraseviciene-Stewart L, et al. Inhibition of VEGF receptors causes lung cell apoptosis and emphysema. J Clin Invest. 2000; 106(11): 1311–1319, doi: 10.1172/JCI10259, indexed in Pubmed: 11104784.
  • 20. Kasahara Y, Tuder RM, Cool CD, et al. Endothelial cell death and decreased expression of vascular endothelial growth factor and vascular endothelial growth factor receptor 2 in emphysema. Am J Respir Crit Care Med. 2001; 163(3 Pt 1): 737–744, doi: 10.1164/ajrccm.163.3.2002117, indexed in Pubmed: 11254533.
  • 21. Katurji M, Daher N, Sheheitli H, et al. Direct measurement of toxicants inhaled by water pipe users in the natural environment using a real-time in situ sampling technique. Inhal Toxicol. 2010; 22(13): 1101–1109, doi: 10.3109/08958378.2010.524265, indexed in Pubmed: 21062108.
  • 22. Khabour OF, Alzoubi KH, Bani-Ahmad M, et al. Acute exposure to waterpipe tobacco smoke induces changes in the oxidative and inflammatory markers in mouse lung. Inhal Toxicol. 2012; 24(10): 667–675, doi: 10.3109/08958378.2012.710918, indexed in Pubmed: 22906173.
  • 23. Kheirallah KA, Alsulaiman JW, Mohammad H AS, et al. Waterpipe Tobacco Smoking among Arab Youth; a Cross-Country Study. Ethn Dis. 2016; 26(1): 107–112, doi: 10.18865/ed.26.1.107, indexed in Pubmed: 26843803.
  • 24. Komurcuoglu A, Kalenci S, Kalenci D. Microalbuminuria in chronic obstructive pulmonary disease. Monaldi Arch Chest Dis. 2003; 59(4): 269–272, indexed in Pubmed: 15148835.
  • 25. Macleod LJ, Heard BE. Area of muscle in tracheal sections in chronic bronchitis, measured by point-counting. J Pathol. 1969; 97(1): 157–161, doi: 10.1002/path.1710970124, indexed in Pubmed: 5783633.
  • 26. Marwick JA, Stevenson CS, Giddings J, et al. Cigarette smoke disrupts VEGF165-VEGFR-2 receptor signaling complex in rat lungs and patients with COPD: morphological impact of VEGFR-2 inhibition. Am J Physiol Lung Cell Mol Physiol. 2006; 290(5): L897–L908, doi: 10.1152/ajplung.00116.2005, indexed in Pubmed: 16361360.
  • 27. Maziak W, Rastam S, Ibrahim I, et al. CO exposure, puff topography, and subjective effects in waterpipe tobacco smokers. Nicotine Tob Res. 2009; 11(7): 806–811, doi: 10.1093/ntr/ntp066, indexed in Pubmed: 19420278.
  • 28. Maziak W. The global epidemic of waterpipe smoking. Addict Behav. 2011; 36(1-2): 1–5, doi: 10.1016/j.addbeh.2010.08.030, indexed in Pubmed: 20888700.
  • 29. Maziak W. The waterpipe: a new way of hooking youth on tobacco. Am J Addict. 2014; 23(2): 103–107, doi: 10.1111/j.1521-0391.2013.12073.x, indexed in Pubmed: 25187045.
  • 30. Maziak W, Taleb ZB, Bahelah R, et al. The global epidemiology of waterpipe smoking. Tob Control. 2015; 24 Suppl 1: i3–ii12, doi: 10.1136/tobaccocontrol-2014-051903, indexed in Pubmed: 25298368.
  • 31. Otsuki S, Sawada H, Yodoya N, et al. Potential contribution of phenotypically modulated smooth muscle cells and related inflammation in the development of experimental obstructive pulmonary vasculopathy in rats. PLoS One. 2015; 10(2): e0118655, doi: 10.1371/journal.pone.0118655, indexed in Pubmed: 25714834.
  • 32. Peinado VI, Barbera JA, Ramirez J, et al. Endothelial dysfunction in pulmonary arteries of patients with mild COPD. Am J Physiol. 1998; 274(6 Pt 1): L908–L913, indexed in Pubmed: 9609729.
  • 33. Polatli M, Cakir A, Cildag O, et al. Microalbuminuria, von Willebrand factor and fibrinogen levels as markers of the severity in COPD exacerbation. J Thromb Thrombolysis. 2008; 26(2): 97–102, doi: 10.1007/s11239-007-0073-1, indexed in Pubmed: 17622488.
  • 34. Primack BA, Carroll MV, Weiss PM, et al. Systematic review and meta-analysis of inhaled toxicants from waterpipe and cigarette smoking. Public Health Rep. 2016; 131(1): 76–85, doi: 10.1177/003335491613100114, indexed in Pubmed: 26843673.
  • 35. Robbesom AA, Versteeg EMM, Veerkamp JH, et al. Morphological quantification of emphysema in small human lung specimens: comparison of methods and relation with clinical data. Mod Pathol. 2003; 16(1): 1–7, doi: 10.1097/01.MP.0000043519.29370.C2, indexed in Pubmed: 12527706.
  • 36. Rosenberg SR, Kalhan R, Mannino DM. Epidemiology of chronic obstructive pulmonary disease: prevalence, morbidity, mortality, and risk factors. Semin Respir Crit Care Med. 2015; 36(4): 457–469, doi: 10.1055/s-0035-1555607, indexed in Pubmed: 26238634.
  • 37. Saetta M, Shiner RJ, Angus GE, et al. Destructive index: a measurement of lung parenchymal destruction in smokers. Am Rev Respir Dis. 1985; 131(5): 764–769, doi: 10.1164/arrd.1985.131.5.764, indexed in Pubmed: 4003921.
  • 38. Santos S, Peinado VI, Ramirez J, et al. Enhanced expression of vascular endothelial growth factor in pulmonary arteries of smokers and patients with moderate chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2003; 167(9): 1250–1256, doi: 10.1164/rccm.200210-1233OC, indexed in Pubmed: 12615615.
  • 39. Shihadeh A, Azar S, Antonios C, et al. Towards a topographical model of narghile water-pipe café smoking: a pilot study in a high socioeconomic status neighborhood of Beirut, Lebanon. Pharmacol Biochem Behav. 2004; 79(1): 75–82, doi: 10.1016/j.pbb.2004.06.005, indexed in Pubmed: 15388286.
  • 40. Singh S, Soumya M, Saini A, et al. Breath carbon monoxide levels in different forms of smoking. Indian J Chest Dis Allied Sci. 2011; 53(1): 25–28, indexed in Pubmed: 21446221.
  • 41. Stacher E, Graham BB, Hunt JM, et al. Modern age pathology of pulmonary arterial hypertension. Am J Respir Crit Care Med. 2012; 186(3): 261–272, doi: 10.1164/rccm.201201-0164OC, indexed in Pubmed: 22679007.
  • 42. Toba M, Alzoubi A, O’Neill KD, et al. Temporal hemodynamic and histological progression in Sugen5416/hypoxia/normoxia-exposed pulmonary arterial hypertensive rats. Am J Physiol Heart Circ Physiol. 2014; 306(2): H243–H250, doi: 10.1152/ajpheart.00728.2013, indexed in Pubmed: 24240870.
  • 43. Voelkel N, Cool C, Taraceviene-Stewart L, et al. Janus face of vascular endothelial growth factor: The obligatory survival factor for lung vascular endothelium controls precapillary artery remodeling in severe pulmonary hypertension. Crit Care Med. 2002; 30(5 Suppl): S251–S256, doi: 10.1097/00003246-200205001-00013.
  • 44. Voelkel NF, Vandivier RW, Tuder RM. Vascular endothelial growth factor in the lung. Am J Physiol Lung Cell Mol Physiol. 2006; 290(2): L209–L221, doi: 10.1152/ajplung.00185.2005, indexed in Pubmed: 16403941.
  • 45. Wright JL, Churg A. Animal models of COPD: Barriers, successes, and challenges. Pulm Pharmacol Ther. 2008; 21(5): 696–698, doi: 10.1016/j.pupt.2008.01.007, indexed in Pubmed: 18325803.
  • 46. Wright JL, Cosio M, Churg A. Animal models of chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol. 2008; 295(1): L1–15, doi: 10.1152/ajplung.90200.2008, indexed in Pubmed: 18456796.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-d04d9cfe-3bbc-4db4-bd9f-986d1ae9e801
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.