PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 12 | 2 |

Tytuł artykułu

The release of sulfur compounds during degradation of feather keratin by two Bacillus strains

Warianty tytułu

PL
Uwalnianie związków siarki podczas degradacji piór przez dwa szczepy Bacillus

Języki publikacji

EN

Abstrakty

EN
Keratinolytic bacteria Bacillus polymyxa B20 and B. cereus B5esz during cultures in medium with chicken feathers as a sole nutrient source, accumulated various amounts of sulfur compounds at different oxidation level, including thiols, thiosulfate, sulfite and sulfate. The main difference observed between the two tested strains was higher release of sulfate by the former and elevated concentration of thiols by the latter. Additionally, the activity of glutathione reductase, that could potentially play a role in keratinolysis was confirmed, mainly in the cell homogenate fraction, rather than extracellular. Keratinases in crude culture fluids exhibited activity towards soluble keratin preparation, as well as native feather keratin. Application of 2-mercaptoethanol and sulfite, agents that potentially could take part in keratin sulfitolysis, led to a conclusion that they could play a role in keratin degradation, other than activation of extracellular enzymes.
PL
Keratynolityczne bakterie Bacilus polymyxa B20 i B. cereus B5esz podczas wzrostu w podłożu z piórami, jako głównym źródłem składników odżywczych, akumulowały w środowisku znaczną ilość związków siarki na różnym stopniu utlenienia, w tym związki tiolowe, tiosiarczany, siarczyny i siarczany. Podstawową różnicą zaobserwowaną pomiędzy dwoma testowanymi mikroorganizmami było wyższe stężenie siarczanów uwalnianych do podłoża przez bakterie B. polymyxa oraz zdolność bakterii B. cereus do akumulacji w podłożu zredukowanych związków tiolowych. Dodatkowo, aktywność reduktazy glutationowej, mogącej potencjalnie brać udział w procesie keratynolizy, została potwierdzona głównie w homogenacie komórek, w przeciwieństwie do frakcji pozakomórkowej. Keratynazy obecne w płynie pohodowlanym wykazywały aktywność zarówno wobec keratyny rozpuszczalnej, jak i keratyny natywnej. Zastosowanie w mieszaninie reakcyjnej 2-merkaptoetanolu oraz siarczynu pozwoliło zwiększyć aktywność badanych keratynaz poprzez intensyfikację sulfitolizy, natomiast nie na drodze aktywacji tych enzymów.

Wydawca

-

Rocznik

Tom

12

Numer

2

Opis fizyczny

p.29-40,fig.,ref.

Twórcy

autor
  • Department of Biotechnology ans Food Microbiology, Wrocław University of Environmental and Life Sciences, Chelmonskiego 37/41, 51-630 Wroclaw, Poland
autor
  • Department of Biotechnology ans Food Microbiology, Wrocław University of Environmental and Life Sciences, Chelmonskiego 37/41, 51-630 Wroclaw, Poland
  • Department of Biotechnology ans Food Microbiology, Wrocław University of Environmental and Life Sciences, Chelmonskiego 37/41, 51-630 Wroclaw, Poland

Bibliografia

  • Bach E., Cannavan F.S., Duarte F.R.S., Taffarel J.A.S., Tsai S.M., Brandelli A., 2011. Characteriza­tion of feather-degrading bacteria from Brazilian soils. Int. Bioteter. Biodegr. 65, 102-107.
  • Baillie A., Norris J.R., 1963. Studies of enzyme changes during sporulation in Bacillus cereus, using starch gel electrophoresis. J. Appl. Bacteriol., 26, 102-106.
  • Böckle B., Möller R., 1997. Reduction of disulfide bonds by Streptomycespactum during growth on chicken feathers. Appl. Environ. Microbiol., 63 (2), 790-792.
  • Cadot C., Tran S.L., Vignaud M.L., De Buyser M.L., Kolst0 A.B., Brisabois A., Nguyen-The C., Lereclus D., Guinebretiere M.H., Ramarao N., 2010. InhAl, NprA, and HlyII as candidates for markers to differentiate pathogenic from nonpathogenic Bacillus cereus strains. J. Clin. Microbiol., 48 (4), 1358-1365.
  • Cao N., Tan H., Liu Y., Xue X., Zhou S., 2008. Characterization of a new keratinolytic Trichoderma artroviride strain F6 that completely degrades native chicken feather. Lett. Appl. Microbiol., 104, 411-419.
  • Carlberg I., Mannervik B., 1985. Glutathione reductase. Meth. Enzymol., 113, 484-490.
  • Daroit D.J., Correa A.P.F., Brandelli A., 2009. Keratinolytic potential of a novel Bacillus sp. P45 isolated from the Amazon basin fish Piaractus mesopotamicus. Int. Biodeter. Biodegr., 63, 358-363.
  • Ghosh A., Chakrabarti K., Chattopadhyay D., 2008. Degradation of raw feather by a novel high molecular weight extracellular protease from newly isolated Bacillus cereus DCUW. J. Ind. Microbiol. Biotechnol., 35, 825-834.
  • Gupta R., Ramnani P., 2006. Microbial keratinases and their prospective applications: an overview. Appl. Microbiol. Biotechnol., 70, 21-33.
  • Ichida J.M., Krizova L., LeFevre C.A., Keener H.M., Elwell D.L. Burtt Jr. E.H., 2001. Bacterial in­oculum enhances keratin degradation and biofilm formation in poultry compost. J. Microbiol., Meth. 47, 199-208.
  • Ignatova Z., Gousterova A., Spassov G., Nedkov P., 1999. Isolation and partial characterisation of extracellular keratinase from a wool degrading thermophilic strain Thermoactinomyces candi­dus. Can. J. Microbiol., 45, 217-222.
  • Jeonga J.H., Leeb O.M., Jeona Y.D., Kima J.D., Leea N.R., Leea C.Y., Sona H.J., 2010. Production of keratinolytic enzyme by a newly isolated feather-degrading Stenotrophomonas maltophilia that produces plant growth-promoting activity. Process Biochem., 45, 1738-1745.
  • Kaul S., Sumbali G., 1999. Production of extracellular keratinase by keratinophilic fungal species inhabiting feathers of living poultry birds (Gallus domesticus): A comparison. Mycopathologia, 146, 19-24.
  • Kletzin A., 1989. Coupled enzymatic production of sulfite, thiosulfate and hydrogen sulfide from sulfur: purification and properties of a sulfur oxygenase reductase from the facultatively an­aerobic archaebacterium Desulfurolobus ambivalens. J. Bacteriol., 171 (3), 1638-1643.
  • Kolmert A., Wikström P., Hallberg K.B., 2000. A fast and simple turbidimetric method for the de­termination of sulfate in sulfate-reducing bacterial cultures. J. Microbiol. Meth., 41, 179-184.
  • Kouwen T.R.H.M., van Dij J.M., 2009. Applications of thiol-disulfide oxidoreductases for opti­mized in vivo production of functionally active proteins in Bacillus. Appl. Microbiol. Biotech- nol., 85, 45-52.
  • Kumar A.G., Swarnalatha S., Gayathri S., Nagesh N., Sekaran G., 2008. Characterization of an alkaline active - thiol forming extracellular serine keratinase by the newly isolated Bacillus pumilus. J. Appl. Microbiol., 104, 411-419.
  • Kunert J., 1989. Biochemical mechanism of keratin degradation by the actinomycete Streptomyces fradiae and the fungus Microsporum gypseum: A comparison. J. Basic Microbiol., 29, 597­604.
  • Kunert J., 1992. Effect of reducing agents on proteolytic and keratinolytic activity of enzymes of Microsporum gypseum. Mycoses. 35, 343-348.
  • Kunert J. Novotny R., 2001. Degradation of human hair by three soil fungi. An electron micro­scopic study. Czech Mycol., 53 (3), 189-201.
  • Kunert J., Stransky Z., 1988. Thiosulfate production from cystine by the keratinolytic prokaryote Streptomyces fradiae. Arch. Microbiol., 150, 600-601.
  • Lechenne B., Reichard U., Zaugg C., Fratti M., Kunert J., Boulat O., Monod M., 2007. Sulphite efflux pumps in Aspergillus fumigatus and dermatophytes. Microbiol., 153, 905-913.
  • Letourneau F., Sousotte V., Bressollier P., Branland P., Verneuil B., 1998. Keratinolytic activity of Streptomyces sp. S.K102: a new isolated strain. Lett. Appl. Microbiol., 26, 77-80.
  • Łaba W., Rodziewicz A., 2010. Keratinolytic potential of feather-degrading Bacilluspolymyxa and Bacillus cereus. Pol. J. Environ. Stud., 19 (2), 371-378.
  • Prakash P., Jayalakshmi S.K., Sreeramulu K., 2010. Purification and characterization of extreme alkaline, thermostable keratinase, and keratin disulfide reductase produced by Bacillus halo- durans PPKS-2. Appl. Microbiol. Biotechnol., 87, 625-633.
  • Rajak R.C., Parwekar S., Malviya H., Hasija S.K., 1991. Keratin degradation by fungi isolated from the grounds of a gelatin factory in Jabalpur, India. Mycopathologia, 114, 83-87.
  • Ramnani P., Singh R., Gupta R., 2005. Keratinolytic potential of Bacillus licheniformis RG1: struc­tural and biochemical mechanism of feather degradation. Can. J. Microbiol., 51, 191-196.
  • Riener C.R., Kada G., Gruber H.J., 2002. Quick measurment of protein sulfhydryls with Ellman's reagent and with 4,4'-dithiodipyridine. Anal. Bioanal. Chem., 373, 266-276.
  • Riffel A., Lucas F., Heeb P., Brandelli A., 2003. Characterization of a new keratinolytic bacterium that completely degrades native feather keratin. Arch. Microbiol., 179, 258-265.
  • Rodziewicz A., Łaba W., 2008. Biodegradation of feather keratin by Bacillus cereus in pure culture and compost, Electronic Journal of Polish Agricultural Universities, 11 (2), #3.
  • Sangali S., Brandelli A., 2000. Feather keratin hydrolysis by a Vibrio sp. strain kr2. J. Appl. Micro­biol., 89, 735-743.
  • Sorbo B., 1957. A colorimetric method for the determination of thiosulfate. Biochim. Biophys. Acta, 23, 412-416.
  • Suh H.J., Lee H.K., 2001. Characterization of a keratinolytic serine protease from Bacillus subtilis KS-1. J. Prot. Chem., 20 (2), 165-169.
  • Vijaya B., Manjunath K., Jayalakshmi N.R., Nagananda G.S., 2011. Characterization of Bacillus polymyxa from jamnagar mine water and biobeneficiation of bauxite ore for calcite through surface modification. Int. J. Microbiol., 2 (2), 156-161.
  • Wang S.L., Hsu W.T., Liang T.W., Lyen Y.H., Wang C.L., 2008. Purification and characterization of three novel keratinolytic metalloproteases produced by Chryseobacterium indologenes TKU014 in a shrimp shell powder medium. Biores. Technol., 99, 5679-5686.
  • Watanabe K., Hayano K., 1995. Seasonal variation of soil protease activities and their relation to proteolytic bacteria and Bacillus spp. in paddy field. Soil Biol. Biochem. 27, 197-203.
  • Wawrzkiewicz K., Łobarzewski J., Wolski T., 1987. Intracellular keratinase of Trichophyton gallinae. J. Med. Vet. Mycol., 25, 261-268.
  • Yamamura S., Morita Y., Hasan Q., Yokoyama K., Tamiya E., 2002. Keratin degradation: a cooperative action of two enzymes from Stenotrophomonas sp. Biochem. Biophys. Res. Com., 294, 1138-114.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-d0133b89-d521-472f-af6e-68f107c16443
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.