PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 31 | 3 |

Tytuł artykułu

Induction of phenolic compounds in two dark-grown lentil cultivars with different tolerance to copper ions

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The influence of a high copper sulphate concentration on growth, Cu accumulation, lipid peroxidation as well as on the contents of total phenolic compounds (PhC) and UV-absorbing compounds (UVAC) in roots of lentil (Lens culinars Medic.) cvs. Krak and Tina was investigated. The plants were subjected to 0.5 mM Cu²⁺ for 3 and 5 days in darkness. Growth inhibition and increased lipid peroxidation in the roots of both cultivars, especially in cv. Tina which accumulated more Cu, were observed. Cu²⁺ treatment caused greater PhC and UVAC accumulation in cv. Krak; however, constitutive levels of these compounds were higher in cv. Tina. The maximum absorption peak of UVAC was determined at 270 nm. HPLC analyses of these compounds revealed the presence of two main derivatives of the soluble (aglycone and esterbound) fraction of the hydroxycinnamic acids, ferulic (FA) and p-coumaric (p-CA) acids and the flavonol, kaempferol (Kam). Greater changes in the content of phenolic acids than of Kam may suggest that the former play a more important role in protecting lentil roots against high Cu²⁺ concentration. Thus, while the lower PhC levels at a higher Cu content in the roots of cv. Tina were probably due to stress, their higher levels in cv. Krak could have been a response to ROS signaling. However, though the high concentration of Cu²⁺ stimulated PhC in cv. Krak, it was not sufficient to counteract the amount of ROS generated by metal presence. These observations may suggest that ROS can serve as a common signal for acclimation to Cu²⁺ stress and cause PhC accumulation in dark-grown roots. The role of PhC in lentil tolerance to Cu²⁺ stress is discussed.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

31

Numer

3

Opis fizyczny

p.587-595,fig.,ref.

Twórcy

autor
  • Department of Ecophysiology and Plant Development, University of Lodz, 90-237 Lodz, Poland
autor
  • Division of Food Science, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Olsztyn, Poland
  • Department of Ecophysiology and Plant Development, University of Lodz, 90-237 Lodz, Poland
autor
  • Division of Food Science, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Olsztyn, Poland
autor
  • Department of Ecophysiology and Plant Development, University of Lodz, 90-237 Lodz, Poland

Bibliografia

  • Ahsan N, Lee DG, Lee SH, Kang SH, Lee JJ, KimPJ, Yoon HS, KimJS, Lee BH(2007) Excess copper induced physiological and proteomic changes in germinating rice seeds. Chemosphere 67:1182–1193. doi:10.1016/j.chemosphere.2006.10.075
  • Ali MB, Singh N, Shohael AM, Hahn EJ, Paek K-Y (2006) Phenolics metabolism and lignin biosynthesis in root suspension cultures of Panax gingeng in response to copper stress. Plant Sci 171:147–154. doi:10.1016/j.plantsci.2006.03.005
  • Amarowicz A, Pegg RB, Rahimi-Moghaddam P, Barl B, Weil JA (2004) Free radical scavenging capacity and antioxidant activity of selected plant species from the Canadian prairies. Food Chem 84:551–562. doi:10.1016/S0308-8146(03)00278-4
  • Amarowicz R, Troszyńska A, Shahidi F (2005) Antioxidant activity of almond extract. J Food Lipids 12:344–358. doi:10.1111/j. 1745-4522.2005.00029.x
  • Babu TS, Akhtar TA, Lampi MA, Tripuranthakam S, Dixon DG, Greenberg BM (2003) Similar stress responses are elicited by copper and ultraviolet radiation in the aquatic plant Lemna gibba: implication of reactive oxygen species as common signals. Plant Cell Physiol 44:1320–1329. doi:10.1093/pcp/pcg160
  • Białońska D, Zobel AM, Kuraś M, Tykarska T, Sawicka-Kapusta K (2007) Phenolic compounds and cell structure in bilberry leaves affected by emission from a Zn–Pb smelter. Water Air Soil Pollut 181:123–133. doi:10.1007/s11270-006-9284-x
  • Bieza K, Lois R (2001) An Arabidopsis mutant tolerant to lethal ultraviolet-B levels shows constitutively elevated accumulation of flavonoids and other phenolics. Plant Physiol 126:1105–1115. doi:10.1104/pp.126.3.1105
  • Caldwell CR (2002) Effect of elevated copper on phenolic compounds of spinach leaf tissues. J Plant Nutr 5:1225–1237. doi: 10.1081/PLN-120004384
  • Chen EL, Chen YA, Chen LM, Liu ZH (2002) Effect of copper on peroxidase activity and lignin content in Rhaphanus sativus. Plant Physiol Biochem 40:439–444. doi:10.1016/S0981-9428(02)01392-X
  • Crozier A, Jensen E, Lean MEI, McDonald MS (1997) Quantitative analysis of flavonoids by reverse-phase high performance liquid chromatography. J Chromatogr A 761:315–321. doi:10.1016/ S0021-9673(96)00826-6
  • Fargašova A (2001) Phytotoxic effects of Cd, Zn, Pb, Cu and Fe on Sinapis alba L. seedlings and their accumulation in roots and shoots. Biol Plant 44:471–473. doi:10.1023/A:1012456507827
  • Fernandez MT, Mira ML, Florencio MH, Jennings KR (2002) Iron and copper chelation by flavonoids: an electrospray mass spectrometry study. J Inorg Biochem 92:105–111. doi:10.1016/ S0162-0134(02)00511-1
  • Gaetke LM, Chow CK (2003) Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology 189:147–163. doi:10.1016/S0300-483X(03)00159-8
  • Garcia A, Baquedano FJ, Navarro P, Castillo FJ (1999) Oxidative stress induced by copper in sunflower plants. Free Radic Res 31:45–50. doi:10.1080/10715769900301311
  • Gordon MH, Roedig-Penmam A (1998) Antioxidant activity of quercetin and myricetin in liposomes. Chem Phys Lipids 97:79–85. doi:10.1016/S0009-3084(98)00098-X
  • Górecka K, Cvikrová M, Kowalska U, Eder J, Szafrańska K, Górecki R, Janas KM (2007) The impact of Cu treatment on phenolic and polyamine levels in plant material regenerated from embryos obtained in anther culture of carrot. Plant Physiol Biochem 45:54–61. doi:10.1016/j.plaphy.2006.12.007
  • Grace SG (2005) Phenolics as antioxidants. In: Smirnoff N (ed) Antioxidants and reactive oxygen species. Blackwell, Oxford, pp 141–168
  • Hagege D, Nouvelot A, Boucaud J, Gaspar T (1990) Malonedialdehyde titration with thiobarbiturate in plant extracts: avoidance of pigment interference. Phytochem Anal 1:86–89
  • Heath RL, Packer L (1968) Photoperodixation in isolated chloroplast I. Kinetics and stochiometry of fatty acid peroxidation.ArchBiochem Biophys 125:189–198. doi:10.1016/0003-9861(68)90654-1
  • Jahangir M, Abdel Farid IB, Coi YH, Verpoorte R (2008) Metal ioninducing metabolite accumulation in Brassica rapa. J Plant Physiol 165:1429–1437. doi:10.1016/j.jplph.2008.04.011
  • Janas KM, Cvikrová M, Pałągiewicz A, Szafrańska K, Posmyk MM (2002) Constitutive elevated accumulation of phenylpropanoids in soybean roots at low temperature. Plant Sci 163:369–373. doi: 10.1016/S0168-9452(02)00136-X
  • Jung C, Maeder V, Funk F, Frey B, Sticher H, Frossard E (2003) Release of phenols from Lupinus albus L. roots exposed to Cu and their possible role in Cu detoxification. Plant Soil 252:301–312. doi:10.1023/A:1024775803759
  • Kopittke PM, Dart PJ, Menzies NW (2007) Toxic effects of low concentrations of Cu on nodulation of cowpea (Vigna unguiculata). Environ Pollut 145:309–315. doi:10.1016/j.envpol.2006.03.007
  • Kováčik J, Gruz J, Bačkor M, Tomko J, Strnad M, Repčák M (2008) Phenolic compounds composition and physiological attributes of Matricaria chamomilla grown in copper excess. Environ Exp Bot 62:145–152. doi:10.1016/j.envexpbot.2007.07.012
  • Lim CE, Coi JN, Kim IA, Lee SA, Hwang Y-S, Lee CH, Lim J (2008) Improved resistance to oxidative stress by a loss-of-function mutation in the Arabidopsis UGT71C1 gene. Mol Cell 25:368–375
  • Lois R (1994) Accumulation of UV-absorbing flavonoids induced by UV-B radiation in Arabidopsis thaliana L. Planta 194:498–503. doi:10.1007/BF00714462
  • Loponen J, Lempa K, Ossipov V, Kozlov MV, Girs A, Hangasmaa K, Haukioja E, Pihlaja K (2001) Pattern in content of phenolic compounds in leaves of mountain birches along a strong pollution gradient. Chemosphere 45:291–301. doi:10.1016/S0045-6535 (00)00545-2
  • Maksymiec W (1997) Effect of copper on cellular processes in higher plants. Photosynthetica 34:321–342. doi:10.1023/A:1006818815528
  • MaksymiecW(2007) Signalling responses in plants to heavymetal stress. Acta Physiol Plant 29:177–187. doi:10.1007/s11738-007-0036-3
  • Michalak A (2006) Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Pol J Environ Stud 15:523–530
  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410. doi:10.1016/S1360-1385(02)02312-9
  • Panou-Filotheou H, Bosabalidis A (2004) Root structural aspects associated with copper toxicity in oregano (Origanum vulgare subsp. hirtum). Plant Sci 166:1497–1504. doi:10.1016/j.plantsci. 2004.01.026
  • Poschenrieder C, Tolrà R, Barceló J (2006) Can metals defend plants against biotic stress? Trends Plant Sci 11:288–295. doi: 10.1016/j.tplants.2006.04.007
  • Posmyk MM, Kontek R, Janas KM (2009) Analysis of the changes in antioxidant enzymes activities in correlation to the phenolic compounds in red cabbage seedlings exposed to toxic copper concentrations. Ecotoxicol Environ Saf 72:596–602. doi: 10.1016/j.ecoenv.2008.04.024
  • Rengel Z (2002) Breeding for better symbiosis. Plant Soil 245:147–162. doi:10.1023/A:1020692715291
  • Rice-Evans C, Miller N, Paganga G (1997) Antioxidant properties of phenolic compounds. Trends Plant Sci 2:152–159. doi: 10.1016/S1360-1385(97)01018-2
  • Roitto M, Rautio P, Julkunen-Titto R, Kukkola E, Huttunen S (2005) Changes in the concentrations of phenolics and photosynthates in Scot pine (Pinus sylvestris L.) seedlings exposed to nickel and copper. Environ Pollut 137:603–609. doi:10.1016/j.envpol.2005.01.046
  • Sakihama Y, Cohen M, Grace SC, Yamasaki H (2002) Plant phenolic antioxidant and prooxidant activities: phenolics-induced oxidative damage mediated by metals in plants. Toxicology 177:67–80. doi: 10.1016/S0300-483X(02)00196-8
  • Sgherri C, Cosi E, Navari-Izzo F (2002) Phenols and antioxidative status of Raphanus sativus grown in copper excess. Physiol Plant 118:21–28. doi:10.1034/j.1399-3054.2003.00068.x
  • Singleton VL, Orthofer R, Laumela-Raventós RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol 299:152–178. doi:10.1016/S0076-6879(99)99017-1
  • Skórzyńska-Polit E, Drążkiewicz M, Wianowska D, Maksymiec W, Dawidowicz AL, Tukiendorf A (2004) The influence of heavy metal stress on the level of some flavonols in the primary leaves of Phaseolus coccineus. Acta Physiol Plant 26:247–254. doi: 10.1007/s11738-004-0014-y
  • Terao J, Piskula M, Yao Q (1994) Protective effect of epicatechin, epicatechin gallate and quercetin on lipid peroxidation in phospholipid bilayers. Arch Biochem Biophys 308:278–284. doi:10.1006/abbi.1994.1039
  • Tewari RK, Kumar P, Sharma PN (2006) Antioxidant responses to enhanced generation at superoxide anion radical and hydrogen peroxide in the copper-stressed mulberry plants. Planta 223:1145–1153. doi:10.1007/s00425-005-0160-5
  • Treutter D (2006) Significance of flavonoids in plant resistance: a review. Environ Chem Lett 4:147–157. doi:10.1007/s10311-006-0068-8
  • Weidner S, Amarowicz R, Karamać M, Dąbrowski K (1999) Phenolic acids in caryopses of two cultivars of wheat, rye and triticale that display different resistance to pre-harvest sprouting. Eur Food Res Technol 210:109–113. doi:10.1007/s002170050544
  • Williams RJ, Spencer JPE, Rice-Evans C (2004) Flavonoids: antioxidants or signaling molecules? Free Radic Biol Med 36:838–849. doi:10.1016/j.freeradbiomed.2004.01.001
  • Winkel-Shirley B (2002) Biosynthesis of flavonoids and effects of stress. Curr Opin Plant Biol 5:218–223. doi:10.1016/S1369-5266(02)00256-X

Uwagi

Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-cecd19b2-814a-45fb-81d7-cbabb97bee23
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.