PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 60 | 2 |

Tytuł artykułu

Cohesin Irr1/Scc3 is likely to influence transcription in Saccharomyces cerevisiae via interaction with Mediator complex

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The evolutionarily conserved proteins forming sister chromatid cohesion complex are also involved in the regulation of gene transcription. The participation of SA2p (mammalian ortholog of yeast Irr1p, associated with the core of the complex) in the regulation of transcription is already described. Here we analyzed microarray profiles of gene expression of a Saccharomyces cerevisiae irr1-1/IRR1 heterozygous diploid strain. We report that expression of 33 genes is affected by the presence of the mutated Irr1-1p and identify those genes. This supports the suggested role of Irr1p in the regulation of transcription. We also indicate that Irr1p may interact with elements of transcriptional coactivator Mediator.

Wydawca

-

Rocznik

Tom

60

Numer

2

Opis fizyczny

p.233-238,fig.,ref.

Twórcy

autor
  • Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
autor
  • Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
  • Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
autor
  • Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
autor
  • Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
  • Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland

Bibliografia

  • Arvindekar AU, Patil NB (2002) Glycogen-a covalently linked component of the cell wall in Saccharomyces cerevisiae. Yeast 19: 131-139. 
  • Boorsma A, Nobel HD, Riet BT, Bargmann B, Brul S, Hellingwerf KJ, Klis FM (2004) Characterization of the transcriptional response to cell wall stress in Saccharomyces cerevisiae. Yeast 21: 413-427. 
  • Bao Y, Shen X (2011) SnapShot: Chromatin remodeling: INO80 and SWR1. Cell 144: 158-158.e2. 
  • Boube M, Joulia L, Cribbs DL, Bourbon HM (2002) Evidence for a mediator of RNA polymerase II transcriptional regulation conserved from yeast to man. Cell 110: 143-151. 
  • Brown CE, Lechner T, Howe L, Workman JL (2000) The many HATs of transcription coactivators. Trends Biochem Sci 25: 15-19. 
  • Cena A, Orlowski J, Machuła K, Fronk J, Kurlandzka A (2007) Substitution F659G in the Irr1p/Scc3p cohesin influences the cell wall of Saccharomyces cerevisiae. Cell Struct Funct 32: 1-7. 
  • Cena A, Kozłowska E, Płochocka D, Grynberg M, Ishikawa T, Fronk J, Kurlandzka A (2008) The F658G substitution in Saccharomyces cerevisiae cohesin Irr1/Scc3 is semi-dominant in the diploid and disturbs mitosis, meiosis and the cell cycle. Eur J Cell Biol 87: 831-844. 
  • Cena A, Kowalec P, Płochocka D, Kurlandzka A (2012) Irr1/Scc3 Cohesin interacts with Rec8 in meiotic prophase of Saccharomyces cerevisiae. OJGen 2: 1-6.
  • Ciosk R, Shirayama M, Shevchenko A, Tanaka T, Toth A, Shevchenko A, Nasmyth K (2000) Cohesin's binding to chromosomes depends on a sep­arate complex consisting of Scc2 and Scc4 proteins. Mol Cell 5: 243-254. 
  • Conaway RC, Sato S, Tomomori-Sato C, Yao T, Conaway JW (2005) The mammalian Mediator complex and its role in transcriptional regulation. Trends Biochem Sci 30: 250-255. 
  • Costenoble R, Picotti P, Reiter L, Stallmach R, Heinemann M, Sauer U, Aebersold R (2011) Comprehensive quantitative analysis of central carbon and amino-acid metabolism in Saccharomyces cerevisiae under multiple conditions by targeted proteomics. Mol Syst Biol 7: 464. 
  • Degner SC, Wong TP, Jankevicius G, Feeney AJ (2008) Cutting edge: developmental stage-specific recruitment of cohesin to CTCF sites throughout immunoglobulin loci during B lymphocyte development. J Immunol 182: 44-48. 
  • Donze D, Adams CR, Rine J, Kamakaka RT (1999) The boundaries of the silenced HMR domain in Saccharomyces cerevisiae. Genes Dev 13: 698-708. 
  • Fromont-Racine M, Rain JC, Legrain P (1997) Toward a functional analysis of the yeast genome through exhaustive two-hybrid screens. Nat Genet 16: 277-282. 
  • Garcia R, Rodriguez-Pena JM, Bermejo C, Nombela C, Arroyo J (2009) The high osmotic response and cell wall integrity pathways cooperate to regulate transcriptional responses to zymolyase-induced cell wall stress in Saccharomyces cerevisiae. J Biol Chem 284: 10901-10911. 
  • Gartenberg M (2009) Heterochromatin and the cohesion of sister chromatids. Chromosome Res 17: 229-238. 
  • Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, Botstein D, Brown PO (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11: 4241-4257. 
  • Glynn EF, Megee PC, Yu HG, Mistrot C, Unal E, Koshland DE, DeRisi JL, Gerton JL (2004) Genome-wide mapping of the cohesin complex in the yeast Saccharomyces cerevisiae. PLoS Biol 2: E259. 
  • Guacci V, Koshland D, Strunnikov A (1997) A direct link between sister chromatid cohesion and chromosome condensation revealed through the analysis of MCD1 in S. cerevisiae. Cell 91: 47-57. 
  • Gullerova M, Proudfoot NJ (2008) Cohesin complex promotes transcriptional termination between convergent genes in S. pombe. Cell 132: 983-995. 
  • Dorsett D (2007) Roles of the sister chromatid cohesion apparatus in gene expression, development and human syndromes. Chromosoma 116: 1-13. 
  • Dorsett D (2009) Cohesin, gene expression and development: lessons from Drosophila. Chromosome Res 17: 185-200. 
  • Dorsett D (2011) Cohesin: genomic insights into controlling gene transcription and development. Curr Opin Genet Dev 21: 199-206. 
  • Hadjur S, Williams LM, Ryan NK, Cobb BS, Sexton T, Fraser P, Fisher AG, Merkenschlager M (2009) Cohesins form chromosomal cis-interactions at the developmentally regulated IFNG locus. Nature 460: 410-413. 
  • Hirayama H, Suzuki T (2011) Metabolism of free oligosaccharides is facilitated in the och1Δ mutant of Saccharomyces cerevisiae. Glycobiology 21: 1341-1348. 
  • Hou C, Dale R, Dean A (2010) Cell type specificity of chromatin organization mediated by CTCF and cohesin. Proc Natl Acad Sci USA 107: 3651-3656. 
  • Ihmels J, Levy R, Barkai N (2004) Principles of transcriptional control in the metabolic network of Saccharomyces cerevisiae. Nat Biotechnol 22: 86-92. 
  • James P, Halladay J, Craig EA (1996) Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144: 1425-1436. 
  • Jimenez-Marti E, Zuzuarregui A, Gomar-Alba M, Gutierrez D, Gil C, del Olmo M (2011) Molecular response of Saccharomyces cerevisiae wine and laboratory strains to high sugar stress conditions. Int J Food Microbiol 145: 211-220. 
  • Kagey MH, Newman JJ, Bilodeau S, Zhan Y, Orlando DA, van Berkum NL, Ebmeier CC, Goossens J, Rahl PB, Levine SS, Taatjes DJ, Dekker J, Young RA (2010) Mediator and cohesin connect gene expression and chromatin architecture. Nature 467: 430-435. 
  • Kornberg RD (2005) Mediator and the mechanism of transcriptional activation. Trends Biochem Sci 30: 235-239. 
  • Kobor MS, Venkatasubrahmanyam S, Meneghini MD, Gin JW, Jennings JL, Link AJ, Madhani HD, Rine J (2004) A protein complex containing the conserved Swi2/Snf2-related ATPase Swr1p deposits histone variant H2A.Z into euchromatin. PLoS Biol 2: E131. 
  • Krogan NJ, Keogh MC, Datta N, Sawa C, Ryan OW, Ding H, Haw RA, Pootoolal J, Tong A, Canadien V, Richards DP, Wu X, Emili A, Hughes TR, Buratowski S, Greenblatt JF (2003) A Snf2 family ATPase complex required for recruitment of the histone H2A variant Htz1. Mol Cell 12: 1565-1576. 
  • Lara-Pezzi E, Pezzi N, Prieto I, Barthelemy I, Carreiro C, Martinez A, Maldonado-Rodriguez A, Lopez-Cabrera M, Barbero JL (2004) Evidence of a transcriptional co-activator function of cohesin STAG/SA/Scc3. J Biol Chem 279: 6553-6559. 
  • Lengronne A, Katou Y, Mori S, Yokobayashi S, Kelly GP, Itoh T, Watanabe Y, Shirahige K, Uhlmann F (2004) Cohesin relocation from sites of chromosomal loading to places of convergent transcription. Nature 430: 573-578. 
  • Lin YY, Qi Y, Lu J, Pan X, Yuan DS, Zhao Y, Bader JS, Boeke JD (2008) A comprehensive synthetic genetic interaction network governing yeast histone acetylation and deacetylation. Genes Dev 22: 2062-2074. 
  • Lin W, Wang M, Jin H, Yu HG (2011A) Cohesin plays a dual role in gene regulation and sister-chromatid cohesion during meiosis in Saccharomyces cerevisiae. Genetics 187: 1041-1051. 
  • Lin W, Jin H, Liu X, Hampton K, Yu HG (2011B) Scc2 regulates gene expression by recruiting cohesin to the chromosome as a transcriptional activator during yeast meiosis. Mol Biol Cell 22: 1985-1996. 
  • Liu J, Zhang Z, Bando M, Itoh T, Deardorff MA, Clark D, Kaur M, Tandy S, Kondoh T, Rappaport E, Spinner NB, Vega H, Jackson LG, Shirahige K, Krantz ID (2009) Transcriptional dysregulation in NIPBL and cohesin mutant human cells. PLoS Biol 7: e1000119. 
  • Lu PY, Levesque N, Kobor MS (2009) NuA4 and SWR1-C: two chromatin-modifying complexes with overlapping functions and components. Biochem Cell Biol 87: 799-815. 
  • Michaelis C, Ciosk R, Nasmyth K (1997) Cohesins: chromosomal proteins that prevent premature separation of sister chromatids. Cell 91: 35-45. 
  • Micialkiewicz A, Chełstowska A (2008) The essential function of Swc4p - a protein shared by two chromatin-modifying complexes of the yeast Saccharomyces cerevisiae - resides within its N-terminal part. Acta Biochim Polon 55: 603-612. 
  • Narlikar GJ, Fan HY, Kingston RE (2002) Cooperation between complexes that regulate chromatin structure and transcription. Cell 108: 475-487. 
  • Novak I, Wang H, Revenkova E, Jessberger R, Scherthan H, Hoog C (2008) Cohesin Smc1β determines meiotic chromatin axis loop organization. J Cell Biol 180: 83-90. 
  • Parelho V, Hadjur S, Spivakov M, Leleu M, Sauer S, Gregson HC, Jarmuz A, Canzonetta C, Webster Z, Nesterova T, Cobb BS, Yokomori K, Dillon N, Aragon L, Fisher AG, Merkenschlager M (2008) Cohesins functionally associate with CTCF on mammalian chromosome arms. Cell 132: 422-433. 
  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29: e45. 
  • Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30: e36. 
  • Prenzel T, Kramer F, Bedi U, Nagarajan S, Beissbarth T, Johnsen SA (2012) Cohesin is required for expression of the estrogen receptor-alpha (ESR1) gene. Epigenetics Chromatin 5: 13. 
  • Roach PJ, Skurat AV, Harris RA (2001) Regulation of glycogen metabolism. In: Handbook of Physiology Section 7, Volume II The Endocrine pancreas and regulation of metabolism. II. Jefferson LS, Cherrington AD, eds, pp 609-647. Lippincott Company, Philadelphia.
  • Rubio ED, Reiss DJ, Welcsh PL, Disteche CM, Filippova GN, Baliga NS, Aebersold R, Ranish JA, Krumm A (2008) CTCF physically links cohesin to chromatin. Proc Natl Acad Sci USA 105: 8309-8314. 
  • Tomonaga T, Nagao K, Kawasaki Y, Furuya K, Murakami A, Morishita J, Yuasa T, Sutani T, Kearsey SE, Uhlmann F, Nasmyth K, Yanagida M (2000) Characterization of fission yeast cohesin: essential anaphase proteolysis of Rad21 phosphorylated in the S phase. Genes Dev 14: 2757-2770. 
  • Schaaf CA, Misulovin Z, Sahota G, Siddiqui AM, Schwartz YB, Kahn TG, Pirrotta V, Gause M, Dorsett D (2009) Regulation of the Drosophila enhancer of split and invected-engrailed gene complexes by sister chromatid cohesion proteins. PLoS ONE 4: e6202. 
  • Schmidt D, Schwalie PC, Ross-Innes CS, Hurtado A, Brown GD, Carroll JS, Flicek P, Odom DT (2010) A CTCF-independent role for cohesin in tissue-specific transcription Genome Res 20: 578-588. 
  • Skibbens RV (2009) Mechanisms of sister chromatid pairing. Int Rev Cell Mol Biol 269: 51-54.
  • Skibbens RV, Marzillier J, Eastman L (2010) Cohesins coordinate gene transcriptions of related function within Saccharomyces cerevisiae. Cell Cycle 9: 1601-1606. 
  • Torres EM, Dephoure N, Panneerselvam A, Tucker CM, Whittaker CA, Gygi SP, Dunham MJ, Amon A (2010) Identification of aneuploidy-tolerating mutations. Cell 143: 71-83. 
  • Vojtek AB, Cooper JA, Hollenberg SM (1997) In The yeast two-hybrid system. Bartel PL, Fields S. eds, pp 29-42. Oxford University Press, New York.
  • Wendt KS, Yoshida K, Itoh T, Bando M, Koch B, Schirghuber E, Tsutsumi S, Nagae G, Ishihara K, Mishiro T, Yahata K, Imamoto F, Aburatani H, Nakao M, Imamoto N, Maeshima K, Shirahige K, Peters JM (2008) Cohesin mediates transcriptional insulation by CCCTC-binding factor. Nature 451: 796-801. 
  • Zeng W, de Greef JC, Chen YY, Chien R, Kong X, Gregson HC, Winokur ST, Pyle A, Robertson KD, Schmiesing JA, Kimonis VE, Balog J, Frants RR, Ball AR Jr, Lock LF, Donovan PJ, van der Maarel SM, Yokomori K (2009) Specific loss of histone H3 lysine 9 trimethylation and HP1gamma/cohesin binding at D4Z4 repeats is associated with facioscapulohumeral dystrophy (FSHD). PLoS Genet 5: e1000559. 

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-ce0b42c9-81f3-495d-aa0d-ffdb0a07a5db
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.