PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 22 | 1 |

Tytuł artykułu

Size distribution and trace elements contents of coal fly ash from pulverized boilers

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Pulverized coal boilers, commonly used in the power and heat-generating industries, constitute one of the most important sources of fine particulate matter (PM) emitted to ambient air. The evidence on airborne PM and its public health impact is consistent in showing adverse health effects at exposures currently experienced by urban populations in both developed and developing countries [1]. The amount, size distribution, chemical composition, and harmfulness of coal fly ash depends on a number of factors such as coal type, composition, preparation method, boiler type and construction, combustion conditions, and the type and efficiency of the applied air pollution control devices. This paper summarizes and discusses the parameters affecting size distribution and trace element contents of fly ash particles emitted from the energetic combustion of hard coal in pulverized boilers equipped with electrostatic precipitators.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

22

Numer

1

Opis fizyczny

p.25-40,fig.,ref.

Twórcy

  • Faculty of Environmental Engineering, Warsaw University of Technology, Nowowiejska 20, 00-653 Warszawa, Poland
autor
  • Faculty of Environmental Engineering, Warsaw University of Technology, Nowowiejska 20, 00-653 Warszawa, Poland

Bibliografia

  • 1. WHO, 2006. Air quality guidelines. Global update 2005. Particulate matter, ozone, nitrogen dioxide and sulfur dioxide, WHO Regional Office for Europe, Copenhagen, 2006.
  • 2. WHO, 2007. Health relevance of particulate matter from various sources. WHO Regional Office for Europe, Copenhagen, 2007.
  • 3. FENGER J. Air pollution in the last 50 years – From local to global. Atmos. Environ. 43, 13, 2009.
  • 4. HARRISON R.M., STEDMAN J., DERWENT D. New Directions: Why are PM₁₀ concentrations in Europe not falling? Atmos. Environ. 42, (3), 603, 2008.
  • 5. HITZENBERGER R, TURSIC J. (Eds), Particulate Matter – Properties Related to Health Effects, Final Scientific Report of COST Action 633, 2009. available at: http://www2.dmu.dk/atmosphericenvironment/COST633/ Downloads/Final_report_part_2_May2009.pdf
  • 6. POPE C.A.III, BURNETT R.T., THUN M.J., CALLE E.E., KREWSKI D., ITO K., THURSTON G.D. Lung cancer, cardiopulmonary mortality and long-term exposure to fine particulate air pollution. J. Am. Med. Assoc. 287, 1132, 2002.
  • 7. BRUNEKREEF B., FORSBERG B. Epidemiological evidence of effects of coarse airborne particles on health. Eur. Respiro. J. 26, 309, 2005.
  • 8. BOLDO E., MEDINA S., LETERTRE A., HURLEY F., MUCKE H-G., BALLESTER F., AGUILERA I., EILSTEIN D. APHEIS: Health impact assessment of long-term exposure to PM₂.₅ in 23 European cities. Environ. Epidemiol. 21, (6), 449, 2006.
  • 9. BROOK R. D., RAJAGOPALAN S., POPE C. A., 3RD, BROOK J. R., BHATNAGAR A., DIEZ-ROUX A. V., HOLGUIN F., HONG Y., LUEPKER R. V., MITTLEMAN M. A., PETERS A., SISCOVICK D., SMITH S. C., JR., WHITSEL L., KAUFMAN J. D. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation. 121, 2331, 2010.
  • 10. Clean Air for Europe (CAFE) (COM(2001)245), 2001.
  • 11. DE LEEUW F., HORÁLEK J. Assessment of the health impacts of exposure to PM₂.₅ at a European level. The European Topic Centre on Air and Climate Change, ETC/ACC Technical Paper 2009/1, Bilthoven 2009.
  • 12. BP, 2011. BP Statistical Review of World Energy. BP, June 2011.
  • 13. BLISSETT R.S., ROWSON N.A. A review of the multi-component utilisation of coal fly ash. Fuel. 97, 1, 2012.
  • 14. LIOR N. Sustainable energy development: the present (2009) situation and possible paths to the future. Energy. 35, (10), 3976, 2010.
  • 15. IZQUIERDO M., QUEROL X. Leaching behaviour of elements from coal combustion fly ash: An overview. Int. J. Coal Geol. 94, 54, 2012.
  • 16. WAGNER N.J., TLOTLENG M.T. Distribution of selected trace elements in density fractionated Waterberg coals from South Africa. Int. J. Coal Geol. 94, 225, 2012.
  • 17. VASSILEV S.V., VASSILEVA C.G. Methods for characterization of composition of fly ashes from coal-fired power stations: a critical overview. Ener. Fuel. 19, (3), 1084, 2005.
  • 18. RODRIGUES S., MARQUES M., WARD C.R., SUÁREZ-RUIZ I., FLORES D. Mineral transformations during high temperature treatment of anthracite. Int. J. Coal Geol, 94, 191, 2012.
  • 19. EPRI, 2010. Comparison of Coal Combustion Products to Other Common Materials: Chemical Characteristics. Electric Power Research Institute, Palo Alto, 2010.
  • 20. WHO, 2000. Air Quality Guidelines for Europe. Second edition. WHO Regional Office for Europe, Copenhagen 2000.
  • 21. WHO, 2007. Health risks of heavy metals from long-range transboundary air pollution. WHO Regional Office for Europe, Copenhagen 2007.
  • 22. NINOMIYA Y., ZHANG L., SATO A., DONG Z. Influence of coal particle size on particulate matter emission and its chemical species produced during coal combustion. Fuel. Process. Technol. 85, 1065, 2004.
  • 23. PACYNA J. Coal-fired power plants as a source of environmental contamination by trace metals and radionuclides. Habituation thesis. Technical University of Wroclaw. Wrocław 1980 [In Polish].
  • 24. MAZUR J., KONIECZYŃSKI J. Distribution of trace elements in granulometric fractions of fly-ash emitted from power stations. Monograph No. 64. Silesian University of Technology. Gliwice 2004 [In Polish].
  • 25. STEC K., KONIECZYŃSKI J. Emissions of hazardous trace elements from various boilers burning coal. In: Air Protection in Theory and Practice, Volume 1, edited by: Konieczyński J., Institute of Environmental Engineering, Polish Academy of Sciences, Zabrze, pp. 163-175, 2010 [In Polish].
  • 26. KONIECZYŃSKI J. (Eds.): Properties of respirable dust emitted from the selected installation. Institute of Environmental Engineering, Polish Academy of Sciences, Papers and Studies, No. 79, Zabrze, 2010 [In Polish].
  • 27. PACYNA J. M., PACYNA E. G., AAS W. Changes of emissions and atmospheric deposition of mercury, lead, and cadmium in. Europe. Atmos. Environ. 43, 117, 2009.
  • 28. PACYNA J. M., PACYNA E. G. An assessment of global and regional emissions of trace metals to the atmosphere from anthropogenic sources worldwide. Environ. Rev. 9, (4), 269, 2001.
  • 29. KAKAREKA S., GROMOV S., PACYNA J., KUKHARCHYK T. Estimation of heavy metal emission fluxes on the territory of the NIS. Atmos. Environ. 38, 7101, 2004.
  • 30. MEIJ R. Trace Element Behavior in Coal-Fired Power Plants. Fuel. Process. Technol. 39, 199, 1994.
  • 31. MEIJ R., WINKEL H. The emissions of heavy metals and persistent organic pollutants from modern coal-fired power stations. Atmos. Environ. 41, 9262, 2007.
  • 32. QUEROL X., FERNÁNDEZ-TURIEL JL., LÓPEZ-SOLER A. Trace elements in coal and their behaviour during combustion in a large power station. Fuel. 74, 331, 1995.
  • 33. MORENO T., ALASTUEY A., QUEROL X., FONT O. GIBBONS W. The identification of metallic elements in airborne particulate matter derived from fossil fuels at Puertollano, Spain. Int. J. Coal Geol. 71, 122, 2007.
  • 34. TOMECZEK J., PALUGNIOK H. Kinetics of mineral matter transformation during coal combustion. Fuel. 81, 1251, 2002.
  • 35. SAROFIM A.F., SENIOR C.L., HELBLE J.J. Emissions of Mercury, trace elements, and fine particles from stationary combustion sources. Fuel. Process. Technol. 65-66, 263, 2000.
  • 36. SENIOR C. L., ZENG T., CHE J., AMES M. R., SAROFIM A. F., OLMEZ I., HUGGINS F. E., SHAH N., HUFFMAN G. P., KOLKER A., MROCZKOWSKI S., PALMER C., FINKELMAN R. Distribution of trace elements in selected pulverized coals as a function of particle size and density. Fuel. Process. Technol. 63, (2-3), 215, 2000.
  • 37. SENIOR C.L., BOOL L.E., SRINIVASACHAR S., PEASE B.R., PORLE K. Pilot scale study of trace element vaporization and condensation during combustion of a pulverized sub-bituminous coal. Fuel Process. Technol. 63, (2-3), 149, 2000.
  • 38. CLACK H.L. Bimodal fly ash size distributions and their influence on gas-particle mass transfer during electrostatic precipitation. Fuel. Process. Technol. 87, 987, 2006.
  • 39. HUANG Y., BAOSHENG J., ZHONG Z., XIAO R., TANG Z., REN R. Trace elements (Mn, Cr, Pb, Se, Zn, Cd and Hg) in emissions from a pulverized coal boiler. Fuel. Process. Technol. 86, 23, 2004.
  • 40. XIAOWEI L., MINGHOU X., DUNXI Y., XIANGPENG G., QIAN C., WEI H. Influence of mineral transformation on emission of particulate matters during coal combustion. Front. Environ. Sci. Eng. Chin. 1, 213, 2007.
  • 41. ZHANG J., ZHAO Y., DING F. ZENG H., CHUGUANG Z. Preliminary study of trace element emissions and control during coal combustion. Front. Energy Power Eng. China, 1, (3), 273, 2007.
  • 42. ZHAO Y., WANG S. X., NIELSEN C. P., LI X. H., HAO J. M. Establishment of a database of emission factors for atmospheric pollutants from Chinese coal-fired power plants, Atmos. Environ. 44, (12), 1515, 2010.
  • 43. US EPA, 1995. AP 42, Compilation of Air Pollutant Emission Factors – US Environmental Protection Agency, Research Triangle Park. 1995.
  • 44. ZHANG L., NINOMIYA Y., YAMASHITA T. Formation of submicron particulate matter (PM₁) during coal combustion and influence of reaction temperature. Fuel. 85, (10-11), 1446, 2006.
  • 45. SRINIVASA REDDY M., BASHA S., JOSHI H.V., JHA B. Evaluation of the emission characteristics of trace metals from coal and oil fired power plants and their fate during combustion. J. Hazard. Mater. 123, (1-3), 242, 2005.
  • 46. BHANGARE R.C., AJMAL P.Y., SAHU S.K., PANDIT G.G., PURANIK V.D. Distribution of trace elements in coal and combustion residues from five thermal power plants in India. Int. J. Coal Geol. 86, 349, 2011.
  • 47. MRINAL K. B., PROBHAT K., GOBIN C. B. Distribution, nature of organic/mineral bound elements in Assam coals. Fuel. 82, (14), 1783. 2003.
  • 48. JEZIERSKA D., JUDA-REZLER K. Evaluation of the participation of power sector in Poland in the emissions of heavy metals. Scientific Papers of the Warsaw University of Technology. Environmental Engineering. Warsaw University of Technology. 26, 173, 1998 [In Polish].
  • 49. GABZDYL W. Geology of coal deposits: deposits of the world. Polish Agency for Ecological, Warsaw 1994 [In Polish].
  • 50. KETRIS M. P., YUDOVICH Y. E. Estimations of clarkes for carbonaceous biolithes: World averages for trace element contents in black shales and coals. Int. J. Coal Geol. 78, (2), 135, 2009.
  • 51. LUO G., YAO H., XU M., GUPTA R., XU Z. Identifying modes of occurrence of mercury in coal by temperature programmed pyrolysis. Proc. Combust. Inst. 33, 2763, 2011.
  • 52. BOJAKOWSKA I., SOKOŁOWSKA G. Mercury in fuels mined in Poland as a potential source of environmental pollution. State Geological Institute Bulletin. 394, 5, 2001 [In Polish].
  • 53. SMOLIŃSKI A. Energy use of coal source of Mercury emissions - a comparison of the contents of this element in coal. Protection of air and waste problems. 2, (238), 45, 2007 [In Polish].
  • 54. WOJNAR K., WISZ J. Mercury in the Polish energy sector. Energy. 2006 [In Polish].
  • 55. SWAINE D. J. Why trace elements are important. Fuel. Process. Technol. 65-66, 21, 2000.
  • 56. DAI S., REN D., CHOU C., FINKELMAN R. B., SEREDIN V.V., ZHOU Y. Geochemistry of trace elements in Chinese coals: A review of abundances, genetic types, impacts on human health, and industrial utilization. Int. J. Coal Geol, 2011.
  • 57. GOODARZI F. Characteristics and composition of fly ash from Canadian coal-fired power plants. Fuel. 85, (10-11), 1418, 2006.
  • 58. LEWIŃSKA-PREIS L., FABIAŃSKA M. J., ĆMIEL S., KITA A. Geochemical distribution of trace elements in Kaffioyra and Longyearbyen coals, Spitsbergen, Norway. Int. J. Coal Geol. 80, (3-4), 211, 2009.
  • 59. SPEARS D.A., TEWALT S.J. The geochemistry of environmentally important trace elements in UK coals, with special reference to the Parkgate coal in the Yorkshire-Nottinghamshire Coalfield, UK. Int. J. Coal Geol. 80, (3-4), 157, 2009.
  • 60. LLORENS J.F., FERNÁNDEZ-TURIEL J.L., QUEROL X. The fate of trace elements in a large coal-fired power plant. Environ. Geol, 40, (4-5), 2001.
  • 61. HUGGINS F.E., SEIDU L.B.A., SHAH N., HUFFMAN G.P., HONAKER R.Q., KYGER J.R., HIGGINS B.L., ROBERTSON J.D., SEEHRA S. PAL, M.S. Elemental modes of occurrence in an Illinois #6 coal and fractions prepared by physical separation techniques at a coal preparation plant. Int. J. Coal Geol. 78, (1), 65, 2009.
  • 62. HUGGINS F.E., HUFFMAN G.P. Modes of occurrence of trace elements in coal from XAFS spectroscopy. Int. J. Coal Geol. 32, 31, 1996.
  • 63. HUGGINS F.E., HUFFMAN G.P. How do lithophile elements occur in organic association in bituminous coals? Int. J. Coal Geol. 58, (3), 193, 2004.
  • 64. FINKELMAN R.B. Modes of occurrence of environmentally-sensitive trace elements in coal, Chapter 3 D.J. Swaine, F. Goodarzi (Eds.), Environmental Aspects of Trace Elements in Coal. Kluwer, Dordrecht: The Netherlands. 312, 24, 1995.
  • 65. RILEY K.W., FRENCH D.H., FARRELL O.P., WOOD R.A., HUGGINS F.E. Modes of occurrence of trace and minor elements in some Australian coals. Int. J. Coal Geol. 94, 214, 2012.
  • 66. FINKELMAN R. B. Modes of occurrence of potentially hazardous elements in coal: levels of confidence. Fuel. Process. Technol. 39, (1-3), 21, 1994.
  • 67. HUGGINS, F.E., ZHAO, J., SHAH, N., HUFFMAN, G.P. Modes of occurrence of trace elements in coal from XAFS spectroscopy. Preprints, Am. Chem. Sot. Div. Fuel Chem. 39 (2), 504, 1994.
  • 68. HUGGINS F. E., HUFFMAN G.P. Comment on and addenda to “Arsenic in coal: A review” by Yudovich and Ketris. Int. J. Coal Geol. 66, (1-2), 148, 2006.
  • 69. GOODARZI F., HUGGINS F.E., SANEI H. Assessment of elements, speciation of As, Cr, Ni and emitted Hg for a Canadian power plant burning bituminous coal. Int. J. Coal Geol. 74, (1), 1, 2008.
  • 70. WEN-FENG W., YONG Q., JUN-YI W., JIAN L. Partitioning of hazardous trace elements during coal preparation. Procedia Earth and Planetary Science. 1, (1), 838, 2009.
  • 71. XU M., YU D., YAO H., LIU X., QIAO Y. Coal combustion-generated aerosols: Formation and properties. P. Combust. Inst. 33, (1), 1681, 2011.
  • 72. YU D., XU M., YAO H., LIU X., ZHOU K., LI L., WEN C. Mechanisms of the central mode particle formation during pulverized coal combustion. P. Combust. Inst. 32, (2), 2075, 2009.
  • 73. ZHOU K., XU M., YU D., WEN C., ZHAN Z., YAO H. The effects of coal blending on the formation and properties of particulate matter during combustion. Chinese. Sci. Bull. 55, (30), 3448, 2010.
  • 74. FIX G., SEAMES W.S., MANN M.D., BENSON S.A., MILLER D.J. The effect of oxygen-to-fuel stoichiometry on coal ash fine-fragmentation mode formation mechanisms. Fuel. Process. Technol. 4, (92), 793, 2011.
  • 75. YU D., MORRIS W. J., ERICKSON R., WENDT J. O.L., FRY A., SENIOR C. L. Ash and deposit formation from oxy-coal combustion in a 100 kW test furnace. Int. J. Greenh. Gas Con. 5, (1), S159, 2011.
  • 76. CENNI R., FRANDSEN F., GERHARDT T., SPLIETHOFF H., HEIN K.R.G. Study on trace metal partitioning in pulverized combustion of bituminous coal and dry sewage sludge. Waste Manage. 18, 433, 1998.
  • 77. LI J., ZHUANG X., QUEROL X., FONT O., MORENO N., ZHOU J. Environmental geochemistry of the feed coals and their combustion by-products from two coal-fired power plants in Xinjiang Province. Northwest China. Fuel. 95, 446, 2012.
  • 78. HUGGINS F. E., SHAH N., HUFFMAN G. P., KOLKER A., CROWLEY S., PALMER C. A., FINKELMAN R. B. Mode of occurrence of chromium in four US coals. Fuel. Process. Technol. 63, (2-3), 79, 2000.
  • 79. MORENO N., QUEROL X., ANDRÉS J.M., STANTON K., TOWLER M., NUGTEREN H., JANSSEN-JURKOVICOVÁ M., JONES R. Physico-chemical characteristics of European pulverized coal combustion fly ashes. Fuel. 84, (11), 1351, 2005.
  • 80. GALOS K., ULIASZ-BOCHEŃCZYK A. Sources and operation of fly ash from combustion of coal in Poland. Mineral Economy. 21, (1), 23, 2005 [In Polish].
  • 81. KAUPPINEN E.I., PAKKANEN T.A. Coal combustion aerosols: a field study. Environ. Sci. Technol. 24, 1811, 1990.
  • 82. KABATA-PENDIAS A., PENDIAS H. Biogeochemistry of trace elements. Polish Scientific Publishers PWN. Warsaw 1999 [In Polish].
  • 83. JUDA-REZLER K., REIZER M., OUDINET J.-P. Determination and analysis of PM₁₀ source apportionment during episodes of air pollution in Central Eastern European urban areas: The case of wintertime 2006. Atmos. Environ., 45, (36), 6557, 2011.
  • 84. KCIE, 2008. Inventory of air emissions of SO₂, NOx, CO, NH₃, dust, heavy metals, POPs and NMVOC in Poland for 2008.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-cc298cc8-670a-42e6-8f62-b09d3741c917
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.