PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2017 | 161 | 09 |

Tytuł artykułu

Glebowo-wodne uwarunkowania prowadzenia gospodarki leśnej w perspektywie zmian klimatu

Treść / Zawartość

Warianty tytułu

EN
Soil-water determinants of forest management in the perspective of climate change

Języki publikacji

PL

Abstrakty

EN
The paper reviews the projected impacts of climate change on forest stands in relation to the local conditions in Poland. One of the most urgent challenges for foresters in Central Europe is adapting the stands to the effects of climate change. Warming of the climate will lead to limited soil water availability to forest stands and to the increasing risk of long−term drought. The threat of soil drought depends on the meteorological conditions, but also on the ability of the soil to retain water. In Poland, forests grow mainly on poor sandy soils with low water retention capacity. Additionally, relatively small precipitation – less than 600 mm per year – occurs in most areas of Poland and long−term periods without precipitation are more and more frequent. In 2015, drought affected large area of the country. The forests are severely exposed to the stress of drought caused by climate change. Polish forests ared comprised of rather small number of tree species. It is considered that drought will threaten the biodiversity of forests. Of all tree species in Poland, Scots pine has the best ability to survive drought and therefore it can be expected that the share of pine in the stands will increase in the future. Pedunculate oak, which is the most common deciduous species in Poland, may retreat because of its vulnerability to drought. Forest management should aim at the adaptation of stands to climate change. The proportion of species resistant to drought stress should be increased. The thinning of forest stand can help to reduce damage. A smaller number of trees contributes to lower interception and consequently increases the amount of water reaching the soil. In some opinions the reduction in the number of trees and the density of the canopy reduces evapotranspiration, but not in Scots pine stands.

Wydawca

-

Czasopismo

Rocznik

Tom

161

Numer

09

Opis fizyczny

s.763-771,rys.,bibliogr.

Twórcy

autor
  • Zakład Ekologii Lasu, Instytut Badawczy Leśnictwa, Sękocin Stary, ul.Braci Leśnej 3, 05-090 Raszyn
autor
  • Zakład Ekologii Lasu, Instytut Badawczy Leśnictwa, Sękocin Stary, ul.Braci Leśnej 3, 05-090 Raszyn
autor
  • Zakład Ekologii Lasu, Instytut Badawczy Leśnictwa, Sękocin Stary, ul.Braci Leśnej 3, 05-090 Raszyn

Bibliografia

  • Albert M., Hansen J., Nagel J., Schmidt M., Spellmann H. 2015. Assessing risks and uncertainties in forest dynamics under different management scenarios and climate change Forest Ecosystems 2 (14): 1-21. DOI: 10.1186/s40663-015-0036-5.
  • Allen C. D., Macalady A. K., Chenchouni H., Bachelet D., McDowell N., Vennetier M., Kitzberger T., Rigling A., Breshears D. D., Hogg E. H., Gonzalez P., Fensham R., Zhang Z., Castro J., Demidova N., Lim J.-H., Allard G., Running S. W., Semerci A., Cobb N. 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management 259: 660-684. DOI: 10.1016/j.foreco.2009.09.001.
  • Aussenac G., Granier A. 1988. Effects of thinning on water stress and growth in Douglas-fir. Canadian Journal of Forest Research 18: 100-105.
  • Baldwin V. C. Jr., Peterson K. D., Clark III A., Ferguson R. B., Strub M. R., Bower D. R. 2000. The effects of spacing and thinning on stand and tree characteristics of 38-year-old loblolly pine. Forest Ecology and Management 137: 91-102.
  • Baumler R., Zech W. 1997. Atmospheric deposition and impact of forest thinning on the throughfall of mountain forest ecosystems in the Bavarian Alps. Forest Ecology and Management 95: 243-251.
  • Blunden J., Arndt D., Baringer M. [red.]. 2011. State of the Climate in 2010. Bulletin of the American Meteorological Society 92 (6): S1-S266.
  • Boczoń A. 2002. Wody gruntowe w Puszczy Białowieskiej w suchym 2000 roku. Sylwan 146 (7): 93-105.
  • Boczoń A. 2006. Charakterystyka warunków termiczno-pluwialnych w Puszczy Białowieskiej w latach 1950-2003. Leś. Pr. Bad. 1: 57-72.
  • Boczoń A., Dudzińska M., Kowalska A. 2016a. Effect of thinning on evaporation of Scots pine forest. Applied Ecology and Environmental Research 14 (2): 367-379. DOI: http://dx.doi.org/10.15666/aeer/1402_367379.
  • Boczoń A., Kowalska A., Dudzińska M., Wróbel M. 2016b. Drought in Polish Forests in 2015. Polish Journal of Environmental Studies 25 (5): 1857-1862.
  • Breda N., Granier A., Aussenac G. 1995. Effects of thinning on soil and tree water relations, transpiration and growth in an oak forest (Quercus petraea (Matt.) Liebl.). Tree Physiology 15: 295-306.
  • Burke E. J., Brown S. J., Christidis N. 2006. Modeling the recent evolution of global drought and projections for the twenty-first century with the Hadley Centre climate model. Journal of Hydrometeorology 7 (5): 1113-1125.
  • Choat B., Jansen S., Brodribb T. J., Cochard H., Delzon S., Bhaskar R., Bucci S. J., Feild T. S., Gleason S. M., Hacke U. G., Jacobsen A. L., Lens F., Maherali H., Martínez-Vilalta J., Mayr S., Mencuccini M., Mitchell P. J., Nardini A., Pittermann J., Pratt R. B., Sperry J. S., Westoby M., Wright I. J., Zanne A. E. 2012. Global convergence in the vulnerability of forests to drought. Nature 491 (7426): 752-755.
  • Chroust L. 1994. Effect of stand density and thinning on water interception in Scots pine stands. Lesnictvi – Forestry 40: 409-416.
  • Climate change. 2013. The physical science basis. IPCC, Cambridge.
  • Cregg B. M., Hennessey T. C., Dougherty P. M. 1990. Water relations of loblolly-pine trees in southeastern Oklahoma following precommercial thinning. Canadian Journal of Forest Research 20: 1508-1513.
  • Dobbertin M., Wermelinger B., Bigler C., Bürgi M., Carron M., Forster B., Gimmi U., Rigling A. 2007. Linking increased drought stress to Scots pine mortality and bark beetle infestations. Scientific World Journal 7 (S1): 231-239. DOI: 10.1100/tsw.2007.58.
  • Eilmann B., Zweifel R., Buchmann N., Pannatier E. G., Rigling A. 2011. Drought alters timing quantity and quality of wood formation in Scots pine. Journal of Experimental Botany 62: 2763-2771.
  • Gracia C., Sabate S., Martinez J. M., Albeza E. 1999. Functional responses to thinning. W: Rodá F., Retana J., Gracia C., Bellot J. [red.]. Ecology of Mediterranean Evergreen Oak Forests. Springer-Verlag, Heidelberg. 329-338.
  • Grossiord Ch., Forner A., Gessler A., Granier A., Pollastrini M., Valladares F., Bonal D. 2015. Influence of species interactions on transpiration of Mediterranean tree species during a summer drought. European Journal of Forest Research 134: 365-376. DOI: 10.1007/s10342-014-0857-8.
  • Grossiord Ch., Granier A., Gessler A., Jucker T., Bonal D. 2014. Does Drought Influence the Relationship Between Biodiversity and Ecosystem Functioning in Boreal Forests? Ecosystems 17: 394-404. DOI: 10.1007/ s10021-013-9729-1.
  • Gustafson E. J., Sturtevant B. R. 2013. Modeling Forest Mortality Caused by Drought Stress: Implications for Climate Change. Ecosystems 16: 60-74. DOI: 10.1007/s10021-012-9596-1.
  • Juodvalkis A., Kairiukstis L., Vasiliauskas R. 2005. Effects of thinning on growth of six tree species in north-temperate forests of Lithuania. European Journal of Forest Research 124: 187-192.
  • Knoche D. 2005. Effects of stand conversion by thinning and underplanting on water and element fluxes of a pine ecosystem (P. sylvestris L.) on lignite mine spoil. Forest Ecology and Management 212: 214-220.
  • Kurz W. A., Dymond C. C., Stinson G., Rampley1 G. J., Neilson E. T., Carroll A. L., Ebata T., Safranyik L. 2008. Mountain pine beetle and forest carbon feedback to climate change. Nature 452: 987-990. DOI: 10.1038/nature06777.
  • Lévesque M., Riglinga A., Bugmannb H., Webera P., Branga P. 2014. Growth response of five co-occurring conifers to drought across a wide climatic gradient in Central Europe. Agricultural and Forest Meteorology 197: 1-12.
  • Lindner M., Maroschek M., Netherer S., Kremer A., Barbati A., Garcia-Gonzalo J., Seidl R., Delzon S., Corona P., Kolström M., Lexer M. J., Marchetti M. 2010. Climate change impacts, adaptive capacity and vulnerability of European forest ecosystems. Forest Ecology and Management 259: 698-709.
  • Lockow K. W. 2003. Wpływ trzebieży na dynamikę rozwoju drzewostanów sosnowych. Sylwan 147 (9): 3-9.
  • Lüttschwager D., Rust S., Wulf M., Forkert J., Hüttl R. F. 1999. Tree canopy and herb layer transpiration in three Scots pine stands with different stand structures. Annals of Forest Science 56: 265-274.
  • Martin-Benito D., Del Rio M., Heinrich I., Helle G., Canellas I. 2010. Response of climate-growth relationships and water use efficiency to thinning in a Pinus nigra afforestation. Forest Ecology and Management 259: 967-975.
  • Misson L., Vincke C., Devillez F. 2003. Frequency responses of radial growth series after different thinning intensities in Norway spruce (Picea abies (L.) Karst.) stands. Forest Ecology and Management 177: 51-63.
  • Müller J., Bolte A., Beck W., Anders S. 1998. Bodenvegetation und Wasserhaushalt von Kiefernforstökosystemen (Pinus sylvestris L.). Verhandlungen der Gesellschaft für Ökologie 27: 407-414.
  • Peters M. P., Iverson L. R., Matthews S. N. 2015. Long-term droughtiness and drought tolerance of eastern US forests over five decades. Forest Ecology and Management 345: 56-64.
  • Scharnweber T., Manthey M., Criegee C., Bauwe A., Schröder C., Wilmking M. 2011. Drought matters – declining precipitation influences growth of Fagus sylvatica L. and Quercus robur L. in north-eastern Germany. Forest Ecology and Management 262: 947-961.
  • Slodicak M., Novak J., Dusek D. 2011. Canopy reduction as a possible measure for adaptation of young Scots pine stand to insufficient precipitation in Central Europe. Forest Ecology and Management 262: 1913-1918.
  • Sohar K., Helama S., Läänelaid A., Raisio J., Tuomenvirta H. 2013. Oak decline in a southern finnish forest as affected by a drought sequence. Geochronometria 41 (1): 92-103. DOI: 10.2478/S13386-013-0137-2.
  • Stogsdill W. R., Wittwer R. F., Hennessey T. C., Dougherty P. M. 1992. Water-use in thinned loblolly-pine plantations. Forest Ecology and Management 50: 233-245.
  • Urli M., Lamy J.-B., Sin F., Burlett R., Delzon S., Porte A. J. 2015. The high vulnerability of Quercus robur to drought at its southern margin paves the way for Quercus ilex. Plant Ecology 216: 177-187. DOI: 10.1007/s11258--014-0426-8.
  • Walczak F., Tratwal A., Bocianowski J. 2015. Effects of Changes in Precipitation and Temperature on Select Agrophage Risk in Poland, 1965-2009. Polish Journal of Environment Studies 24: 325-332. DOI: 10.15244/pjoes/ 27820.
  • Wang Q., Wu J., Lei T., He B., Wu Z., Liu M., Mo X., Geng G., Li X., Zhou H., Liu D. 2014. Temporal-spatial characteristics of severe drought events and their impact on agriculture on a global scale. Quaternary International 349: 10-21.
  • Weemstra M., Eilmann B., Sass-Klaassen U. G. W., Sterck F. J. 2013. Summer droughts limit tree growth across 10 temperate species on a productive forest site. Forest Ecology and Management 306: 142-149.
  • Whitehead D., Jarvis P. G., Waring R. H. 1984. Stomatal conductance, transpiration, and resistance to water uptake in a Pinus sylvestris spacing experiment. Canadian Journal of Forest Research 14: 692-700.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-cbf268d3-10ae-49b3-b0db-687ea42f087c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.