PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | 10 | 1 |

Tytuł artykułu

Evaluation of morphological indices and total body electrical conductivity to assess body composition in big brown bats

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Bat researchers have used both morphological indices and total body electric conductivity (TOBEC) as proxies for body condition in a variety of studies, but have typically not validated these indices against direct measurement of body composition. We quantified body composition (total carcass lipids) to determine if morphological indices were useful predictors of body condition in big brown bats (Eptesicus fuscus). We also evaluated body composition indirectly by TOBEC using EM-SCAN® technology. The most important predictors of body composition in multiple regression analysis were body mass-to-forearm ratio (partial r2 = 0.82, P < 0.001) followed by TOBEC measurement (partial r2 = 0.08, P < 0.001) and to a minor extent head length (partial r2 = 0.02, P < 0.05). Morphological condition indices alone may be adequate for some studies because of lower cost and effort. Marking bats with passive integrated transponder (PIT) tags affected TOBEC measurements.

Wydawca

-

Rocznik

Tom

10

Numer

1

Opis fizyczny

p.153-159,fig.,ref.

Twórcy

autor
  • Department of Biology, Colorado State University, Fort Collins, 8052 CO, USA
autor
  • U.S. Geological Survey, Fort Collins Science Center, 2150 Centre Ave., Bldg. C, Fort Collins, 80526-8118 CO, USA
autor
  • Department of Biology, Colorado State University, Fort Collins, 8052 CO, USA

Bibliografia

  • 1. Animal Care and Use Committee 1998. Guidelines for the capture, handling, and care of mammals as approved by the American Society of Mammalogists. Journal of Mammalogy 79:1416–1431. Google Scholar
  • 2. E. L P. Anthony 1988. Age determination in bats. Pp 47–58. in Ecological and behavioral methods for the study of bats T. H. Kunz , editor. ed. Smithsonian Institution Press. Baltimore, Maryland. 533. pp. Google Scholar
  • 3. G. C. Bachman 1994. Food restriction effects on the body composition of free-living ground squirrels, Spermophilus beldingi. Physiological Zoology 67:756–770. Google Scholar
  • 4. G. Castro, B. A. Wunder, and F. L. Knopf . 1990. Total body electrical conductivity (TOBEC) to estimate total body fat of free-living birds. Condor 92:496–499. Google Scholar
  • 5. P. L. Duverge, G. Jones, J. Rydell, and R. D. Ransome . 2000. Functional significance of emergence timing in bats. Ecography 23:32–40. Google Scholar
  • 6. L. E. Ellison, T. J. O'Shea, D. J. Neubaum, M. A. Neubaum, R. D. Pearce, and R. A. Bowen . 2007. A comparison of conventional capture versus PIT reader techniques for estimating survival and capture probabilities of big brown bats (Eptesicus fuscus). Acta Chiropterologica 9:149–160. Google Scholar
  • 7. W. G. Ewing, E. H. Studier, and M. J. O'Farrell . 1970. Autumn fat deposition and gross body composition in three species of Myotis. Comparative Biochemistry and Physiology 36:119–129. Google Scholar
  • 8. M. L. Fiorotto, W. J. Cochran, R. C. Funk, H. P. Sheng, and W. J. Klish . 1987. Total body electrical conductivity measurements: effects of body composition and geometry. American Journal of Physiology-Regulatory Integrative and Comparative Physiology 252:795–800. Google Scholar
  • 9. R. Gerell and K. Lundberg . 1990. Sexual differences in survival rates of adult pipistrelle bats (Pipistrellus pipistrellus) in south Sweden. Oecologia 83:401–404. Google Scholar
  • 10. K. L. Gerhart, R. G. White, R. D. Cameron, and D. E. Russell . 1996. Estimating fat content of caribou from body condition scores. Journal of Wildlife Management 60:713–718. Google Scholar
  • 11. J. P. Hayes and J. S. Shonkwiler . 2001. Morphometric indicators of body condition: worthwhile or wishful thinking. Pp 8–38. in Body composition analysis of animals J. R. Speakman , editor. ed. Cambridge University Press. Cambridge, UK. 242. pp. Google Scholar
  • 12. D. H. Johnson, G. L. Krapu, K. J. Reinecke, and D. G. Jorde . 1985. An evaluation of condition indices for birds. Journal of Wildlife Management 49:569–575. Google Scholar
  • 13. P. Kanuch, A. Kristin, and J. Kristofik . 2005. Phenology, diet, and ectoparasites of Leisler's bat (Nyctalus leisleri) in the western Carpathians (Slovakia). Acta Chiropterologica 7:249–257. Google Scholar
  • 14. T. Kokurewicz 2004. Sex and age related habitat selection and mass dynamics of Daubenton's bats Myotis daubentonii (Kuhl, 1817) hibernating in natural conditions. Acta Chiropterologica 6:121–144. Google Scholar
  • 15. P. Koteja, M. Jurczyszyn, and B. W. Wołoszyn . 2001. Energy balance of hibernating mouse-eared bat Myotis myotis: a study with a TOBEC instrument. Acta Theriologica 46:1–12. Google Scholar
  • 16. A. Kurta 1990. Eptesicus fuscus. American Society of Mammalogists Mammalian Species 356:1–10. Google Scholar
  • 17. A. Kurta 1999. Big brown bat, Eptesicus fuscus. Pp 115–117. in The Smithsonian book of North American mammals D. E. Wilson and S. Ruff , editors. eds. Smithsonian Institution Press. Washington D.C. 750. pp. Google Scholar
  • 18. B. S. Law 1996. Residency and site fidelity of marked populations of the common blossom bat Syconycteris australis in relation to the availability of Banksia inflorescences in New South Wales, Australia. Oikos 77:447–458. Google Scholar
  • 19. J. M. Morton, R. L. Kirkpatrick, and E. P. Smith . 1991. Comments on estimating total body lipids from measures of lean mass. The Condor 93:463–465. Google Scholar
  • 20. D. J. Neubaum, M. A. Neubaum, L. E. Ellison, and T. J. O'Shea . 2005. Survival and condition of big brown bats (Eptesicus fuscus) after radiotagging. Journal of Mammalogy 86:95–98. Google Scholar
  • 21. C. F J. O'Donnell 2002. Timing of breeding, productivity and survival of long-tailed bats Chalinolobus tuberculatus (Chiroptera: Vespertilionidae) in cold-temperate rainforest in New Zealand. Journal of Zoology (London) 257:311–323. Google Scholar
  • 22. K. J. Park, G. Jones, and R. D. Ransome . 2000. Torpor, arousal, and activity of hibernating greater horseshoe bats (Rhinolophus ferrumequinum). Functional Ecology 14:580–588. Google Scholar
  • 23. R. D. Pearce and T. J. O'Shea . 2007. Ectoparasites in an urban population of big brown bats (Eptesicus fuscus) in Colorado. Journal of Parasitology 93:518–530. Google Scholar
  • 24. J. A. Pitt, S. Lariviere, and F. Messier . 2006. Condition indices and bioelectrical impedance analysis to predict body condition of small carnivores. Journal of Mammalogy 87:717–722. Google Scholar
  • 25. R. Ransome 1990. The natural history of hibernating bats Christopher Helm Publishers. Kent. 235. pp. Google Scholar
  • 26. R. D. Ransome 1995. Earlier breeding shortens life in female greater horseshoe bats. Philosophical Transactions of the Society of London 350B:153–161. Google Scholar
  • 27. J. S. Reynolds 1999. Variation in life history traits in the little brown bat, Myotis lucifugus (Chiroptera: Vespertilionidae). Ph.D. Dissertation. Boston University. Boston, Massachussetts. 337. pp. Google Scholar
  • 28. J. S. Reynolds and T. H. Kunz . 2001. Standard methods for destructive body composition analysis. Pp 39–55. in Body composition analysis of animals J. R. Speakman , editor. ed. Cambridge University Press. Cambridge, UK. 242. pp. Google Scholar
  • 29. D. Russo 2002. Elevation affects the distribution of the two sexes in Daubenton's bats Myotis daubentonii (Chiroptera: Vespertilionidae) from Italy. Mammalia 66:543–551. Google Scholar
  • 30. D. Russo, G. Jones, and M. Mucedda . 2001. Influence of age, sex and body size on echolocation calls of Mediterranean and Mehely's horseshoe bats, Rhinolophus euryale and R. mehelyi (Chiroptera: Rhinolophidae). Mammalia 65:429–436. Google Scholar
  • 31. I. Scott, C. Selman, P. I. Mitchell, and P. R. Evans . 2001. The use of total body electrical conductivity (TOBEC) to determine body composition in vertebrates. Pp 127–160. in Body composition analysis of animals J. R. Speakman , editor. ed. Cambridge University Press. Cambridge, UK. 242. pp. Google Scholar
  • 32. B. M. Siemers, K. Beedholm, C. Dietz, I. Dietz, and T. Ivanova . 2005. Is species identity, sex, age or individual quality conveyed by echolocation call frequency in European horseshoe bats. Acta Chiropterologica 7:259–274. Google Scholar
  • 33. S. K. Skagen, F. L. Knopf, and B. S. Cade . 1993. Estimation of lipids and lean mass of migrating sandpipers. The Condor 95:944–956. Google Scholar
  • 34. M. V. Snyder, D. M. Post, and E. J. Finck . 2005. The use of total body electrical conductivity (TOBEC) to predict lean and lipid mass in woodrats. Wildlife Society Bulletin 33:1009–1017. Google Scholar
  • 35. J. R. Speakman 2001. Introduction. Pp 1–7. in Body composition analysis of animals J. R. Speakman , editor. ed. Cambridge University Press. Cambridge, UK. 242. pp. Google Scholar
  • 36. J. R. Speakman and P. A. Racey . 1986. The influence of body condition on sexual development of male brown long-eared bats (Plecotus auritus) in the wild. Journal of Zoology (London) 210:515–525. Google Scholar
  • 37. R. D. Stevenson and W. A. Woods Jr. . 2006. Condition indices for conservation: new uses for evolving tools. Integrative and Comparative Biology 46:1169–1190. Google Scholar
  • 38. E. T. Unangst and L. A. Merkley . 2002. The effects of lipid location on non-invasive estimates of body composition using EM-SCAN technology. Journal of Experimental Biology 205:3101–3105. Google Scholar
  • 39. E. T. Unangst and B. A. Wunder . 2001. Need for species-specific models for body-composition estimates of small mammals using EM-SCAN®. Journal of Mammalogy 82:527–534. Google Scholar
  • 40. E. T. Unangst and B. A. Wunder . 2002. Body-composition dynamics in meadow voles (Microtus pennsylvanicus) of southeastern Colorado. American Midland Naturalist 149:211–218. Google Scholar
  • 41. M. B. Voltura and B. A. Wunder . 1998. Electrical conductivity to predict body composition of mammals and the effects of gastrointestinal contents. Journal of Mammalogy 79:279–286. Google Scholar
  • 42. G. E. Walsberg 1988. Evaluation of a nondestructive method for determining fat stores in small birds and mammals. Physiological Zoology 61:153–159. Google Scholar
  • 43. J. Wimsatt, T. J. O'Shea, L. E. Ellison, R. D. Pearce, and V. R. Price . 2005. Anesthesia and blood sampling of wild big brown bats (Eptesicus fuscus) with an assessment of impacts on survival. Journal of Wildlife Diseases 41:87–95. Google Scholar

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-ca970d84-cec5-431e-870e-474f7d099fdb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.