PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 14 | 4 |

Tytuł artykułu

The chemical composition of lemon balm and basil plants grown under different light conditions

Treść / Zawartość

Warianty tytułu

PL
Skład chemiczny roślin melisy i bazylii uprawianych w zróżnicowanych warunkach świetlnych

Języki publikacji

EN

Abstrakty

EN
The aim of this study was to compare chemical composition of lemon balm and basil herbage grown in containers under fluorescent lamps (FL) and LED modules (LEDs). There were significant differences in the response of the species for the applied source of light. The content of essential oils was greater in basil herbage under fluorescent lamps, whereas the content of essential oils in lemon balm herbage was greater under LED lamps. The basil and lemon balm plants were characterised by high content of fructose and glucose and by very low content of sucrose. There were no significant differences in the nitrates content in basil and lemon balm herbage grown under either source of light. Both the basil and lemon balm herbage were found to have higher content of macroand micronutrients when they were grown under LEDs compared with fluorescent lamps. It can be concluded that the chemical composition of lemon balm and basil herbage was very varied and dependent on both the light and the species.
PL
Światło jest jednym z czynników uprawy roślin mających wpływ na ich skład fitochemiczny. Jednak reakcja roślin na światło jest bardzo różna. Celem pracy było porównanie składu chemicznego ziela melisy i bazylii uprawianych w pojemnikach w zróżnicowanych warunkach świetlnych. Jako źródeł światła użyto lamp fluorescencyjnych (FL) oraz modułów diodowych. Stwierdzono istotne różnice w reakcji obu gatunków w zależności od zastosowanego światła. Zawartość olejków eterycznych w zielu bazylii była większa w uprawie przy lampach fluorescencyjnych, z kolei w zielu melisy była większa w uprawie pod modułami LED. Ziele bazylii i melisy charakteryzowało się dużą zawartością fruktozy i glukozy oraz bardzo małą zawartością sacharozy. Nie stwierdzono istotnych różnic w zawartości azotanów w bazylii i melisie dla obu źródeł światła. Zarówno bazylia, jak i melisa charakteryzowały się większą zawartość makro- i mikroelementów w uprawie pod diodami. Zawartość badanych substancji w zielu melisy i bazylii zależała zarówno od zastosowanego źródła światła jak i od gatunku.

Wydawca

-

Rocznik

Tom

14

Numer

4

Opis fizyczny

p.93-104,fig.,ref.

Twórcy

autor
  • Department of Vegetable Crops, Poznan University of Life Sciences, Dabrowskiego 159, 60-594 Poznan, Poland
autor
  • Department of Vegetable Crops, Poznan University of Life Sciences, Dabrowskiego 159, 60-594 Poznan, Poland
autor
  • Department of Vegetable Crops, Poznan University of Life Sciences, Dabrowskiego 159, 60-594 Poznan, Poland
  • Department of Vegetable Crops, Poznan University of Life Sciences, Dabrowskiego 159, 60-594 Poznan, Poland

Bibliografia

  • Baroli, I., Price, G.D., Badger, M.R., Von Caemmerer, S. (2008). The contribution of photosynthesis to the red light response of stomatal conductance. Plant Physiol., 146, 737–747.
  • Bian, Z.H., Yang, Q.C., Liu, W.K. (2014). Effects of light quality on the accumulation of phytochemicals in vegetables produced in controlled environments: A review. J. Sci. Food Agricult, DOI: 10.1002/jsfa.6789.
  • Borowski, E., Hawrylak-Nowak, B., Michałek, S. (2014). The response of lettuce to fluorescent light and led light relative to different nitrogen nutrition of plants. Acta Sci. Pol. Hortorum Cultus, 13(5), 211–224.
  • Breś, W., Golcz, A., Komosa, A., Kozik, E., Tyksiński, W. (2009). Nawożenie roślin ogrodniczych. Wyd. UP w Poznaniu, 189 ss. Crawford, W.H. (1995). Nitrate: nutrient and signal for plant growth. Plant Cell., 7, 859–868.
  • Danielczuk, J., Pietrzykowski, R., Zieliński, R. (2004). Comparative study of the enzymatic method for determination of vitamin c with routine methods according to ISO. Pol. J. Food Nutr. Sci., 13/54(1), 41–46.
  • Dong, J., Zhang, M., Lu, L., Sun, L., Xu, M. (2012). Nitric oxide fumigation stimulates flavonoid and phenolic accumulation and enhances antioxidant activity of mushroom. Food Chem., 135(3), 1220–1225.
  • Flamini, G., Cioni, P., Morelli, L. (2002). Main-agronomic-productive characteristics of two ecotypes of Rosemarinus officinalis L. and chemical composition of their essential oils. J. Agric. Food Chem., 50, 3512–3717.
  • Frąszczak, B., Golcz, A., Zawirska-Wojtasiak, R., Janowska, B. (2014). Growth rate of sweet basil and lemon balm plants grown under fluorescent lamps and led modules. Acta Sci. Pol. Hortorum Cultus, 13(2), 3–13.
  • Fu, W., Li, P., Wu, Y. (2012). Effects of different light intensities on chlorophyll fluorescence characteristics and yield in lettuce. Sci. Hortic., 135, 45–51.
  • Galuszka, P., Frebortova, J., Luhova, L., Bilyeu, K.D., English, J.T., Frebort, I. (2005). Tissue localization of cytokinin dehydrogenase in maize: possible involvement of quinone species generated from plant phenolics by other enzymatic systems in the catalytic reaction. Plant Cell Physiol., 46, 716–728.
  • Głowacka, B. (2008). Wpływ składu spektralnego światła na wzrost rozsady bazylii pospolitej (Ocimum basilicum L.), melisy lekarskiej (Melissa officinalis L.) i ogórecznika lekarskiego (Borago officinalis L.). Zesz. Post. Nauk Roln., 527, 131–138.
  • Hogewoning, S.W., Trouwborst, G., Maljaars, H., Poorter, H., van Ieperen, W., Harbinson, J. (2010). Blue light dose–responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light. J. Exp. Bot., 61, 3107–3117.
  • Islam, M.A., Kuwar, G., Clarke, J.L., Blystad, D-R., Gislerød, H.R., Olsen, J.E., Torre, S. (2012). Artificial light from light emitting diodes (LEDs) with a high portion of blue light results in shorter poinsettias compared to high pressure sodium (HPS) lamps. Sci. Hortic., 147, 136–143.
  • Jackson, R.K. (1980). Avoiding interferences and problems in the determination of nitrate. The comparison of two methods: The Orion specific ion electrode and the cadmium column. Comm. Soil Sci. Plant Anal., 11(2), 127–134.
  • Johansen, H.N., Glitso, V., Knutsen, K.E.B. (1996). Influence of extraction solvent and temperature on the quantitative determination of oligosaccharides from plant materials by highperformance liquid chromatography. J. Agric. Food Chem., 44, 1470–1474.
  • Kim, H.H., Goins, G.D., Wheeler, R.M., Sager, J.C. (2004). Green-light supplementation for enhanced lettuce growth under red- and blue-light-emitting diodes. HortSci., 39, 1617–1622.
  • Lee, S-W., Seob, J.M., Leeb, M-K., Chun, J-H., Antonisamy, P., Arasub, M.V., Suzukic, T., AlDhabid, N.A., Kimb, S-J. (2014). Influence of different LED lamps on the production of phenolic compounds in common and Tartary buckwheat sprouts. Ind. Crop. Prod., 54, 320–326.
  • Lefsrud, M.G., Kopsell, D.A., Sams, C.E. (2008). Irradiance from distinct wavelength lightemitting diodes affect secondary metabolites in kale. HortSci., 43, 2243–2244.
  • Li, Q., Kubota, C. (2009). Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce. Environ. Exp. Bot., 67, 59–64.
  • Lillo, C., Appenroth, K.J. (2001). Light regulation of nitrate reductase in higher plants: which photoreceptors are involved? Plant Biol., 3, 455–465.
  • Lin, K.-H., Huang, M.-Y., Huang, W.-D., Hsu, M.-H., Yang, Z.-W., Yang, C.-M. (2013). The effects of red, blue, and white light-emitting diodes on the growth, development, and edible quality of hydroponically grown lettuce (Lactuca sativa L. var. capitata). Sci. Hort., 150, 86–91.
  • Miyashita, Y., Kimura, T., Kitaya, Y., Kubota, C., Kozai, T. (1997). Effect of red light on the growth and morphology of potato plantlets in vitro: using light emitting diodes (LEDs) as a light source for micropropagation. Acta Hort., 418, 169–173.
  • Mou, B. (2009). Nutrient content of lettuce and its improvement. Curr. Nutr. Food Sci., 5, 242–248.
  • Nowosielski, O. (1988). Zasady opracowywania zaleceń nawozowych w ogrodnictwie. PWRiL Warszawa, 221 ss.
  • Ohashi-Kaneko, K., Takase, M., Kon, N., Fujiwara, K., Kurata, K. (2007). Effect of light quality on growth and vegetable quality in leaf lettuce, spinach and komatsuna. Environ. Control Biol., 45, 189–198.
  • PN-A-04019. Produkty Spożywcze: oznaczanie zawartości witaminy C. Polish Pharmacopoeia (Farmakopea Polska) IX (2011). T. 1. Melissae Folium, 1326–1328.
  • Price, J., Laxmi, A., St Martin, S.K., Jang, J.C. (2004). Global transcription profiling reveals multiple sugar signal transduction mechanisms in Arabidopsis. Plant Cell, 16, 2128–2150.
  • Qamaruddin, M., Tillberg, E. (1989). Rapid effects of red-light on the isopentenyladenosine content in scots pine seeds. Plant Physiol., 91, 5–8.
  • Qi, L.D., Liu, S.H.Q., Xu, L., Yu, W.Y., Lang, Q.L. Hao, S.H.Q. (2007). Effects of light qualities on accumulation of oxalate, tannin and nitrate in spinach. Trans. Chin. Soc. Agric. Eng., 4, 201–205.
  • Ranwala, N.K.D., Decoteau, D.R., Ranwala, A.P., Miller, W.B. (2002). Changes in soluble carbohydrates during phytochrome-regulated petiole elongation in watermelon seedlings. Plant Growth. Reg., 38, 157–163.
  • Samuolienė, G., Sirtautas, R., Brazaitytė, A., Duchovskis, P. (2012). LED lighting and seasonality effects antioxidant properties of baby leaf lettuce. Food Chem., 134 1494–1499.
  • Samuolienė, G., Urbonavičiūtė, A., Duchovskis, P., Bliznikas, Z., Pranciškus, V., Žukauskas, A. (2009). Decrease in nitrate concentration in leafy vegetables under a solid-state illuminator. HortSci., 44, 1857–1860.
  • Serrano, E., Palma, J., Tinoco, T., Venacio, F., Martines, A. (2002). Evaluation of the essential oils of Rosemarinus officinalis L. from different zones of Alantejo (Portugal). J. Essent. Oils Res., 14, 87–92.
  • Shinora, Y., Suzuki, Y. (1981). Effects of light and nutritional conditions on the ascorbic acid content of lettuce. J. Jpn. Soc. Hortic. Sci., 50, 239–246.
  • Swartz, T.E., Corchnoy, S.B., Christie, J.M., Lewis, J.W., Szundi, I., Briggs, W.R., Bogomolni, R.A. (2001). The photocycle of a flavin-binding domain of the blue light photoreceptor phototropin. J. Biol. Chem., 276, 36493–36500.
  • Tegelberg, R., Julkunen-Tiitto, R., Aphalo, P.J. (2004). Red: far-red light ratio and UV-B radiation: their effects on leaf phenolics and growth of silver birch seedlings. Plant Cell Environ., 27, 1005–1013.
  • Wu, M.-C., Hou, C.-Y., Jiang, C.-M, Wang, Y.-T, Wang, C.-Y, Chen, H.-H, Chang, H.-M. (2007). A novel approach of LED light radiation improves the antioxidant activity of pea seedlings. Food Chem., 101, 1753–1758.
  • Yorio, N.C., Goins, G.D., Kagie, H.R. (2001). Improving spinach, radish, and lettuce growth under red light-emitting diodes (LEDs) with blue light supplementation. HortSci., 36, 380–383.
  • Zawirska-Wojtasiak, R., Mildner-Szkudlarz, S., Jeleń, H., Wąsowicz, E. (2005). Estimation of rosemary aroma by sensory analysis, gas chromatography and electronic nose. In: State of the art. Flavour chemistry and biology, T., Hofmann, M., Rothe, P., Schieberle (eds). Deutsche Forschungsanstalt fur Lebensmittelchemie, Garching, 130–136
  • Zawirska-Wojtasiak, R., Wąsowicz, E., Jeleń, H., Rudzińska, M., Kamiński, E., Błażczak, P. (1998). Aroma characteristics of dill seeds varieties grown in Poland. Pol. J. Food Nutr. Sci., 2, 181–191.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-ca49d1e4-89ac-4ec8-abb9-0320eeea8913
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.