PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 17 | 3 |

Tytuł artykułu

Stabilization of erythrocytes against oxidative and hypotonic stress by tannins isolated from sumac leaves (Rhus typhina L.) and grape seeds (Vitis vinifera L.)

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Erythrocytes are constantly exposed to ROS due to their function in the organism. High tension of oxygen, presence of hemoglobin iron and high concentration of polyunsaturated fatty acids in membrane make erythrocytes especially susceptible to oxidative stress. A comparison of the antioxidant activities of polyphenol-rich plant extracts containing hydrolysable tannins from sumac leaves (Rhus typhina L.) and condensed tannins from grape seeds (Vitis vinifera L.) showed that at the 5–50 μg/ml concentration range they reduced to the same extent hemolysis and glutathione, lipid and hemoglobin oxidation induced by erythrocyte treatment with 400 μM ONOO− or 1 mM HClO. However, extract (condensed tannins) from grape seeds in comparison with extract (hydrolysable tannins) from sumac leaves stabilized erythrocytes in hypotonic NaCl solutions weakly. Our data indicate that both hydrolysable and condensed tannins significantly decrease the fluidity of the surface of erythrocyte membranes but the effect of hydrolysable ones was more profound. In conclusion, our results indicate that extracts from sumac leaves (hydrolysable tannins) and grape seeds (condensed tannins) are very effective protectors against oxidative damage in erythrocytes.

Wydawca

-

Rocznik

Tom

17

Numer

3

Opis fizyczny

p.333-348,fig.,ref.

Twórcy

autor
  • Department of Biophysics, University of Bialystok, Swierkowa 20B, 15-950 Bialystok, Poland
autor
autor
autor
autor

Bibliografia

  • 1.Martindale, J.L. and Holbrook, N.J. Cellular response to oxidative stress: signaling for suicide and survival. J. Cell Physiol. 192 (2002) 1-15.
  • 2. Esteva, S., Pedret, R., Fort, N., Torrella, J.R., Pages, T. and Viscor, G. Oxidative stress status in rats after intermittent exposure to hypobaric hypoxia. Wilderness Environ. Med. 21 (2010) 325-331.
  • 3. Roitman, E.V., Dement’eva, I.I., Azizova, O.A., Nikitina, E.V., Gagaeva, E.V. and Lopukhin, Iu.M. Changes in blood rheological properties and erythrocyte osmotic resistance in activation of free radical processes. Klin. Lab. Diagn. 3 (2001) 42-43.
  • 4. Brzeszczynska, J., Luciak, M. and Gwozdzinski, K. Alterations of erythrocyte structure and cellular susceptibility in patient with chronic renal failure: effect of haemodialysis and oxidative stress. Free Radic. Res. 42 (2008) 40-48.
  • 5. Samukawa, K., Suzuki, Y., Ohkubo, N., Aoto, M., Sakanaka, M. and Mitsuda, N. Protective effect of ginsenosides Rg(2) and Rh(1) on oxidationinduced impairment of erythrocyte membrane properties. Biorheology 45 (2008) 689-700.
  • 6. Hatherill, J.R., Till, G.O. and Ward, P.A. Mechanisms of oxidant-induced changes in erythrocytes. Agents Actions 32 (1991) 351-358.
  • 7. Nikolaidis, M.G. and Jamurtaz, A.Z. Blood as a reactive species generator and redox status regulator during exercise. Arch. Biochem. Biophys. 490 (2009) 77-84.
  • 8. Nagababu, E., Mohanty, J.G., Ghamidipaty, S., Ostera, G.R. and Rifkind, J.M. Role of the membrane in the formation of heme degradation products in red blood cells. Life Sci. 86 (2010) 133-138.
  • 9. Kiefmann, R., Rifkind, J.M., Nagababu, E. and Bhattacharya, J. Red blood cells induce hypoxic lung inflammation. Blood 111 (2008) 5205-5214.
  • 10. Lang, F., Lang, K.S., Lang, P.A., Huber, S.M. and Wieder, T. Osmotic shock–induced suicidal death of erythrocytes. Acta Physiol. (Oxf.) 187 (2006) 191-198.
  • 11. Minetti, M., Agati, L. and Malorni, W. The microenvironment can shift erythrocytes from a friendly to a harmful behavior: Pathogenetic implications for vascular diseases. Cardiovasc. Res. 75 (2007) 21-28.
  • 12. Minetti, M., Pietraforte, D., Straface, E., Metere, A., Matarrese, P. and Malorni, W. Red blood cells as a model to differentiate between direct and indirect oxidation pathways of peroxynitrite. Methods Enzymol. 440 (2008) 253-272.
  • 13. Haslam, E. Natural polyphenols (vegetable tannins) as drugs: possible modes of action. J. Nat. Prod. 59 (1996) 205-215.
  • 14. Haslam, E. Vegetable tannins – Lessons of a phytochemical lifetime. Phytochemistry 68 (2007) 2713-2721.
  • 15. Koleckar, V., Kubikova, K., Rehakova, Z., Kuca, K., Jun, D., Jahodar, L. and Opletal, L. Condensed and hydrosable tannins as antioxidants influencing the healt. Mini Rev. Med. Chem. 8 (2008) 436-447.
  • 16. Zhu, Q.Y., Schramm, D.D., Gross, H.B., Holt, R.R., Kim, S.H., Yamaguchi, T., Kwik-Uribe, C.L. and Keen, C.L. Influence of cocoa flavanols and procyanidins on free radical-induced human erythrocyte hemolysis. Clin. Dev. Immunol. 12 (2005) 27-34.
  • 17. Sangeetha, P., Balu, M., Haripriya, C. and Pannerselvam, C. Age associated changes in erythrocyte membrane surface change: Modulatory role of grape seed proanthocyanidins. Exp. Gerontol. 40 (2005) 820-828.
  • 18. Carini, M., Aldini, G., Bombardelli, E., Morazzoni, P. and Facino, R.M. UVB–induced hemolysis of rat erythrocytes: Protective effect of procyanidins from grape seeds. Life Sci. 67 (2000) 1799-1814.
  • 19. Fedeli, D., Berrettini, M., Gabryelak, T. and Falcioni G. The effect of some tannins on trout erythrocytes exposed to oxidative stress. Mutat. Res. 563 (2004) 89-96.
  • 20. Olchowik, E., Sciepuk, A., Mavlyanov, S., Abdulladjanova, N. and Zamaraeva, M. Antioxidant capacities of polyphenols from Sumac (Rhus typhina L.) leaves in protection of erythrocytes against oxidative damage. Biomed. Prev. Nutr. (2011), doi:10.1016/j.bionut.2011.06.008
  • 21. Islambekov, Sh.Yu., Mavlyanov, S.M., Kamaev, F.G. and Ismailov, A.I. Phenolic compounds of sumac. Chem. Nat. Comp. 30 (1994) 37-39.
  • 22. Pirniyazov, A.Zh., Abdulladzhanova, N.G., Mavlyanov, S.M., Kamaev, F.G. and Dalimov, D.N. 2003. Polyphenols from Vitis vinifera seeds. Chem. Nat. Comp. 39 (2003) 349-354.
  • 23. Soszyński, M. and Bartosz, G. Effect of peroxynitrite on erythrocytes. Biochim. Biophys. Acta 1291 (1996) 107-114.
  • 24. Yagi, K. and Rastogi, R. Assay for lipid peroxides in animals tissues by thiobarbituric acid reaction. Annu. Rev. Biochem. 95 (1979) 351-358.
  • 25. Pietraforte, D., Matarrese, P., Straface, E., Gambardella, L., Metere, A., Scorza, G., Leto, T.L., Malorni, W. and Minetti, M. Two different pathways are involved in peroxynitrite-induced senescence and apoptosis of human erythrocytes. Free Radic. Biol. Med. 42 (2007) 202-214.
  • 26. Zavodnik, L.B., Zavodnik, I.B., Lapshyna E.A., Buko, V.U. and Bryszewska, M.J. Hypochlorous acid-induced membrane pore formation in red blood cells. Bioelectrochemistry 58 (2002) 157-161.
  • 27. Ionov, M., Gordiyenko, N., Olchowik, E., Baram, N., Zijaev, K., Salakhutdinov, B., Bryszewska, M. and Zamaraeva, M. The immobilization of gossypol derivative on N-polyvinylpyrrolidone increases its water solubility and modifies membrane–active properties. J. Med. Chem. 52 (2009) 4119-4125.
  • 28. Salikhov, Sh.I., Mavlyanov, S.M., Abdulladjanova, N.G., Pirniyazov, A.J., Dalimov, D.N., Salakhutdinov, B.A. and Kurmukov A.G. Polyphenols of some tannin containing plants and creation on their base drug remedies. New Research on Biotechnology and Medicine. New York: Nova Science (2006) 109-117.
  • 29. Amer, J., Ghoti, H., Rachmilewitz, E., Koren, A., Lenin, C. and Fibach, E. Red blood cells, platelets and polymorphonuclear neutrophils of patients with sickle cell disease exhibit oxidative stress that can be ameliorated by antioxidants. Br. J. Haematol. 132 (2006) 108-113.
  • 30. Aslan, M. and Freeman, B.A. Redox-dependent impairment of vascular function in sickle cell disease. Free Radic. Biol. Med. 43 (2007) 1469-1483.
  • 31. Pandey, K.B. and Rizvi, S.I. Markers of oxidative stress in erythrocytes and plasma during aging in humans. Oxid. Med. Cell Longev. 3 (2010) 2-12.
  • 32. Sola, E., Vaya, A., Martinez, M., Moscardo, A., Corella, D., Santaolaria, M. L., Espana, F. and Mijares, A.H. Erythrocyte membrane phosphatidylserine exposure in obesity. Obesity (Silver Spring) 17 (2008) 318-322.
  • 33. Hagerman, A.E., Riedl, K.M., Jones, G.A., Sovik, K.N., Ritchard, N.T, Hartzfeld, P.W. and Riechel, T.L. High molecular weight plant polyphenolics (tannins) as biological antioxidants. J. Agric. Food Chem. 46 (1998) 1887-1892.
  • 34. Tarahovsky, Y.S. Plant polyphenols in cell-cell interaction and communication. Plant Signal. Behav. 3 (2008) 609-611.
  • 35. Scalbert, A. and Williamson, G. Dietary intake and bioavailability of polyphenols. J. Nutr. 130 (2000) 2073-2085.
  • 36. Koren, E., Kohen, R. and Ginsburg, I. Polyphenols enhance total oxidant – scavenging capacities of human blood by binding to red blood cells. Exp. Biol. Med. (Maywood) 235 (2010) 689-699.
  • 37. Pennathur, S., Maitra, D., Byun, J., Slikovic, I., Abdulhamid, I., Saed, G.M., Diamond, M.P. and Abu-Soud, H.M. Potent antioxidative activity of lycopene: A potential role in scavenging hypochlorous acid. Free Radic. Biol. Med. 49 (2010) 205-213.
  • 38. Zavodnik, I.B., Lapshina, E.A., Zavodnik, L.B., Bartosz, G., Soszynski, M. and Bryszewska, M. Hypochlorous acid damages erythrocyte membrane proteins and alters lipid bilayer structure and fluidity. Free Radic. Biol. Med. 30 (2001) 363-369.
  • 39. Robaszkiewicz, A., Greig, F.H., Pitt, A.R., Spickett, C.M., Bartosz, G. and Soszynski, M. Effect of phosphatidylcholine chlorohydrins on human erythrocytes. Chem. Phys. Lipids 163 (2010) 639-647.
  • 40. Kleinbongard, P., Schulz, R., Rassaf, T., Lauer, T., Dejam, A., Jax, T., Kumara, I., Gharini, P., Kabanosa, S., Ozüyaman, B., Schnürch, H.G., Gödecke, A., Weber, A.A., Roberek, M., Roberek, H., Bloch, W., Rösen, P. and Kelm, M. Red blood cells express a functional endothelial nitric oxide synthase. Blood 107 (2006) 2943-2951.
  • 41. Starodubtseva, M.N., Tattersall, A.L., Kuznetsova, T.G., Yegorenkov, N.I. and Ellory, J.C. Structural and functional changes in the membrane and membrane skeleton of red blood cells induced by peroxynitrite. Bioelectrochemistry 73 (2008) 155-162.
  • 42. Rubbo, H., Trostchansky, A. and O’Donnell, V.B. Peroxynitrite-mediated lipid oxidation and nitration: mechanisms and consequences. Arch. Biochem. Biophys. 15 (2009) 167-172.
  • 43. Balavoine, G.A. and Geletti, Y.V. Peroxynitrite scavenging by different antioxidants. Part I: Convenient assay. Nitric Oxide 3 (1999) 40-54.
  • 44. Tsuda, T., Kato, Y. and Osawa, T. Mechanism for peroxynitrite scavenging activity by anthocyanins. FEBS Lett. 484 (2000) 207-210.
  • 45. Marzouk, M.S., Moharram, F.A., Mohamed, M.A., Gama–Eldeen, A.M. and Aboutabl. E.A. Anticancer and antioxidant tannins from Pimenta dioica leaves. Z. Naturforsch. C 62 (2007) 526-536.
  • 46. Romero, N., Denicola, A. and Radi, R. Red blood cells in the metabolism of nitric oxide-derived peroxynitrite. IUBMB Life 58 (2006) 572-580.
  • 47. Hapner, C.D., Deuster, P. and Chen, Y. Inhibition of oxidative hemolysis by quercetin, but not other antioxidants. Chem. Biol. Interact. 186 (2010) 275-279.
  • 48. Solarska, K., Lewińska, A., Karowicz–Bilińska, A. and Bartosz, G. The antioxidant properties of carnitine in vitro. Cell. Mol. Biol. Lett. 15 (2010) 90-97.
  • 49. Verstraeten, S.V., Oteiza, P.I. and Fraga, C.G. Membrane effects of cocoa procyanidins in liposomes and Jurkat T cells. Biol. Res. 37 (2004) 293-300.
  • 50. Labieniec, M. and Gabryelak, T. Effects of tannins on Chinese hamster cell line B14. Mutat. Res. 539 (2003) 127-135.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-ca0b0b8e-3f31-4fab-bfcc-0dccacd8e5c0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.