PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 23 |

Tytuł artykułu

Promowanie wzrostu roślin przez bakterie z rodzaju Azospirillum oraz ich zastosowanie w rolnictwie

Warianty tytułu

EN
Plant growth promotion by bacteria of the genus Azospirillum and their application in agriculture

Języki publikacji

PL

Abstrakty

PL
Bakterie z rodzaju Azospirillum są jednym z głównych rodzajów najpełniej scharakteryzowanym w grupie bakterii wspierających wzrost i rozwój roślin. W opracowaniu omówiono aspekty istotne dla interakcji Azospirillum z roślinami: tworzenie asocjacji, wzajemne oddziaływanie między bakteriami i korzeniami, wiązanie azotu i syntezę fitohormonów. Azospirillum aktywnie kolonizują przeważnie powierzchnię roślin. Asocjacja komórki Azospirillum do korzeni zachodzi w dwóch fazach. W pierwszym etapie tzw. adsorpcji jest indukowany przez glikoproteid flagellina, której obecność aktywuje drugi etap asocjacji. Bakterie z rodzaju Azospirillum zdolne są do wiązania azotu atmosferycznego. Geny strukturalne odpowiedzialne za wiązanie azotu (nif) są bardzo konserwatywne, podobne u wszystkich asymilatorów N2. Aktywator transkrypcji NifA jest potrzebny do ekspresji innych genów nif w odpowiedzi na dwa główne sygnały środowiskowe. Wiele genów bierze udział w procesie kolonizacji korzeni, wspieraniu rozwoju roślin i adaptacji do warunków w ryzosferze. Od dwóch dziesięcioleci Azospirillum pozostają w centrum uwagi naukowców, gdyż w odpowiednich warunkach mogą korzystnie oddziaływać na plonowanie wielu roślin uprawnych.
EN
Azospirillum represents the best characterized genus of plant growth-promoting rhizobacteria. Four aspects of the Azospirillum plant root interaction are highlighted: associations, plant root interaction, nitrogen fixation and biosynthesis of plant growth hormones. Each of these aspects is dealt with in a comparative way. Azospirilla are predominantly surface colonizing bacteria. The attachment of Azospirillum cells to plant roots occurs in two steps. The polar flagellum, of which the flagellin was shown to be a glycoprotein, mediates the adsorption step. Nitrogen fixation structural genes (nif) are highly conserved among all nitrogen-fixing bacteria. The transcriptional activator NifA is required for expression of other nif genes in response to two major environmental signals. Many genes are involved in colonization of plant roots, plant-growth promotion, and properties related to rhizosphere adaptation. Those bacteria have been in the centre of scientific interest for the last two decades because under appropriate conditions members of this genus can enhance plant development and promote the yield of several agriculturally important crop plants.

Wydawca

-

Rocznik

Numer

23

Opis fizyczny

s.48-62,rys.,tab.,bibliogr.

Twórcy

autor
  • Zakład Mikrobiologii Rolniczej, Instytut Uprawy Nawożenia i Gleboznawstwa – Państwowy Instytut Badawczy, ul. Czartoryskich 8; 24-100 Puławy, Polska
autor
  • Zakład Mikrobiologii Rolniczej, Instytut Uprawy Nawożenia i Gleboznawstwa – Państwowy Instytut Badawczy, ul. Czartoryskich 8; 24-100 Puławy, Polska
autor
  • Zakład Mikrobiologii Rolniczej, Instytut Uprawy Nawożenia i Gleboznawstwa – Państwowy Instytut Badawczy, ul. Czartoryskich 8; 24-100 Puławy, Polska

Bibliografia

  • Arsene F., Kaminski P.A., Elmerich C., 1999. Control of Azospirillum brasilense NifA activity by PII: effect of replacing Tyr residues of the NifA N-terminal domain on NifA activity. FEMS Microbiology Letters, 179: 339-343.
  • Arsene F., Kaminski P.A., Elmerich C., 1996. Modulation of NifA activity by PII in Azospirillum brasilense: evidence for a regulatory role of the NifA N-terminal domain. Journal of Bacteriology, 178: 4830-4838.
  • Arzanesh M.H., Alikhani H.A., Khavazi K., Rahimian H.A., Miransari M., 2011. Wheat (Triticum aestivum L.) growth enhancement by Azospirillum sp. under drought stress. World Journal of Microbiology and Biotechnology, 27: 197-205.
  • Aßmus, B., Schloter M., Kirchhof G., Hutzler P., Hartmann A., 1997. Improved in situ tracking of rhizosphere bacteria using dual straining with fluorescent-labeled antibodies and rRNA-targeted oligonucleotides. Microbial Ecology, 33: 32-40.
  • Aßmus B., Hutzler P., Kirchhof G., Amann R., Lawrence J. R., Hartmann A., 1995. In situ localization of Azospirillum brasilense in the rhizosphere of wheat with fluorescently labeled, rRNA-targeted oligonucleotide probes and scanning confocal laser microscopy. Applied and Environmental Microbiology, 61: 1013-1019.
  • Baj J., 2007. Metabolizm. ss. 139-143. W: Biologia molekularna bakterii, red. Baj J., Markiewicz Z., Wydawnictwo Naukowe PWN, Warszawa.
  • Baldani J.I., Caruso L., Baldani V.L.D., Goi S.R., Döbereiner J., 1997. Recent advances in BNF with non-legume plants. Soil Biology and Biochemistry, 29: 911-922.
  • Barbieri P., Galli E., 1993. Effect on wheat root development of inoculation with an Azospirillum brasilense mutant with altered indole-3-acetic production. Research in Microbiology, 144: 69-75.
  • Bashan Y., Holguin G., 1997. Azospirillum-plant relationships: environmental and physiological advances (1990-1996). Canadian Journal of Microbiology, 43: 103-121.
  • Bashan Y., Holguin G., Bashan L., 2004. Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997-2003). Canadian Journal of Microbiology, 50: 521-577.
  • Bellone C.H., de Bellone Silvia C., 2012. Interaction of Azospirillum brasilense and Glomus intrarradix in Sugar Cane Roots. Indian Journal of Microbiology, 52: 70-75.
  • Berlier Y.M., Lespinat P.A., 1980. Mass-spectrometric kinetic studies of the nitrogenase and hydrogenase activities in in-vivo cultures of Azospirillum brasilense Sp. 7. Archives of Microbiology, 125: 67-72.
  • Bottini R., Fulchieri M., Pearce D., Pharis R.P., 1989. Identification of gibberellins A1, A3, and iso-A3 in cultures of Azospirillum lipoferum. Plant Physiology, 90: 45-47.
  • Cacciari I., Lippi D., Pietrosanti T., Pietrosanti W., 1989. Phytohormone-like substances produced by single and mixed diazotrophic cultures of Azospirillum and Arthrobacter. Plant and Soil., 115: 151-153.
  • Cassán F., Perrig D., Sgroy V., Luna V., 2011. Basic and technological aspects of phytohormone production by microorganisms: Azospirillum sp. as a model of plant growth promoting rhizobacteria. ss. 141-167. W: Bacteria in agrobiology: plant nutrient management, red. Maheshwari D.K. Springer-Verlag Berlin Heidelberg.
  • Cohen A., Bottini R., Piccoli P., 2008. Azospirillum brasilense Sp245 produces ABA in chemically-defined culture medium and increases ABA content in arabidopsis plants. Plant Growth Regulator, 54: 97-103.
  • Conn K.L., Nowak J., Lazarovits G., 1997. A gnotobiotic bioassay for studying interactions between potatoes and plant growth-promoting rhizobacteria. Canadian Journal of Microbiology, 43: 801-808.
  • Correa-Aragunde N., Graziano M., Chevalier C., Lamattina L., 2006. Nitric oxide modulates the expression of cell cycle regulatory genes during lateral root formation in tomato. Journal of Experimental Botany, 57: 581-588.
  • Costacurta A., Keijers V., Vanderleyden J., 1994. Molecular cloning and sequence analysis of an Azospirillum brasilense indole-3-pyruvate decarboxylase gene. Molecular Genetics and Genomics, 243: 463-472.
  • Costacurta A., Vanderleyden J., 1995. Synthesis of phytohormones by plant-associated bacteria. Critical Reviews in Microbiology, 21: 1-18.
  • Crozier A., Arruda P., Jasmim J.M., Monteiro A.M., Sandberg G., 1988. Analysis of indole-3-acetic acid and related indoles in culture medium from Azospirillum lipoferum and Azospirillum brasilense. Applied and Environmental Microbiology, 54: 2833-2837.
  • de Zamaroczy M., 1998. Structural homologues PII and PZ of Azospirillum brasilense provide intracellular signaling for selective regulation of various nitrogen-dependent functions. Molecular Microbiology, 29: 449-463.
  • de Zamaroczy M., Paquelin A., Elmerich C., 1993. Functional organization of the glnB – glnA cluster of Azospirillum brasilense. Journal of Bacteriology, 175: 2507-2515.
  • Dixon R., 1998. The oxygen-responsive NifL-NifA complex: a novel two-component regulatory system controlling nitrogenase synthesis in gamma-proteobacteria. Archives of Microbiology, 169: 371-380.
  • Dixon R., Kahn D., 2004. Genetic regulation of biological nitrogen fixation. Nature Reviews Microbiology, 2: 621-631.
  • Dobbelaere S., Croonenborghs A., Thys A., Vande Broek A., Vanderleyden J., 1999. Phytostimulatory effect of Azospirillum brasilense wild type and mutant strains altered in IAA production on wheat. Plant and Soil, 212: 155-164.
  • Dobbelaere S., Croonenborghs A., Tys A., Ptacek D., Vanderleyden J., Dutto P., Labandera-Gonzales C., CaballeroMellado J., Aguirre J.F., Kapulnik Y., Brener S., Burdman S., Kadouri D., Sarig S., Okon Y., 2001. Responses of agronomically important crops to inoculation with Azospirillum. Journal of Plant Physiology, 28: 871-879.
  • Döbereiner J., 1983. Dinitrogen fixation in rhizosphere and phyllosphere association. ss. 332-350. W: Encyclopedia of Plant Physiology, New Series, Vol. 15 A, Eds. A. Lauchli and R.L. Bielski., Springer-Verlag, Berlin.
  • Döbereiner J., Marriel I.E., Nery M., 1976. Ecological distribution of Spirillum lipoferum Beijerinck. Canadian Journal of Microbiology, 22: 1464-1473.
  • Eckert B., Weber O.B., Kirchhof G., Halbritter A., Stoffels M., Hartmann A., 2001. Azospirillum doebereinerae sp. nov., a nitrogen-fixing bacterium associated with the C4–grass Miscanthus. International Journal of Systematic and Evolutionary Microbiology, 51: 17-26.
  • Fallik E., Okon Y., Epstein E., Goldman A., Fischer M., 1989. Identification and quantification of IAA and IBA in Azospirillum brasilense-inoculated maize roots. Soil Biology and Biochemistry, 21: 147-153.
  • Fu H., Burris R.H., 1989. Ammonium inhibition of nitrogenase activity in Herbaspirillum seropedicae. Journal of Bacteriology, 171: 3168-3175.
  • Fulchieri M., Lucangeli C., Bottini R., 1993. Inoculation with Azospirillum lipoferum affects growth and gibberellin status on corn seedling roots. Plant Cell Physiology, 34: 1305-1309
  • Gałązka A., Król M., Perzyński A., 2012. The efficiency of rhizosphere bioremediation with Azospirillum sp. and Pseudomonas stutzeri in soils freshly contaminated with PAHs and diesel fuel. Polish Journal of Environmental Studies, 21: 343-351.
  • Gałązka A., Gałązka R., 2015. Phytoremediation of polycyclic aromatic hydrocarbons in soils artificially polluted using plant-associated-endophytic bacteria and Dactylis glomerata as the bioremediation plant. Polish Journal of Microbiology, 64(3): 239-250.
  • Gallori E., Bazzicalupo M., 1985. Effect of nitrogen compounds on nitrogenase activity in Azospirillum brasilense. FEMS Microbiology Letters, 28: 35-38.
  • Haahtela A., Kari K., Sundman V., 1983. Nitrogenase activity (acetylene reduction) of root-associated, cold-climate Azospirillum, Enterobacter, Klebsiella, and Pseudomonas species during growth on various carbon sources and at various partial pressures of oxygen. Applied and Environmental Microbiology, 45: 563-570.
  • Han S.O., New P.B., 1998. Variation in nitrogen fixing ability among natural isolates of Azospirillum. Microbial Ecology, 36: 193-201.
  • Hartmann A., Baldani J.I., 2006. The genus Azospirillum. Prokaryotes, 5: 115-140.
  • Hartmann A., Burris R.H., 1987. Regulation of nitrogenase activity by oxygen in Azospirillum brasilense and Azospirillum lipoferum. Journal of Bacteriology, 169: 944-948.
  • Hartmann A., Fu H., Burris R.H., 1986. Regulation of nitrogenase activity by ammonium chloride in Azospirillum spp. Journal of Bacteriology, 165: 864-870.
  • Hartmann A., Fu H., Song S., Burris R.H., 1985. Comparison of nitrogenase regulation in A. brasilense, A. lipoferum, and A. amazonense. ss. 116-126. W: Azospirillum III: Genetics, Physiology, Ecology, red. Klingműller W., Springer-Verlag Berlin Heidelberg.
  • Hartmann A., Kleiner D., 1982. Ammonium (methylammonium) transport by Azospirillum spp. FEMS Microbiology Letters, 15: 65-67.
  • Hartmann A., Singh M., Klingmüller M., 1983. Isolation and characterization of Azospirillum mutants excreting high amounts of indoleacetic acid. Canadian Journal of Microbiology, 29: 916-923.
  • Ishizuka J., 1992. Trends in biological nitrogen fixation research and application. Plant and Soil., 141: 197-209.
  • James E.K., 2000. Nitrogen fixation in endophytic and associative symbiosis. Field Crop Research, 65: 197-209.
  • Kalitkiewicz A., Kępczyńska E., 2008. Wykorzystanie ryzobakterii do stymulacji wzrostu roślin. Biotechnologia, 81: 102-114.
  • Kennedy I.R., Tchan Y.T., 1992. Biological nitrogen fixation in non-leguminous field crops: recent advances. Plant and Soil, 141: 93-118.
  • Khammas K.M., Ageron E., Grimont P.A.D., Kaiser P., 1989. Azospirillum irakense sp. nov., a nitrogen-fixing bacterium associated with the rice roots and rhizosphere soil. Research of Microbiology, 140: 679-693.
  • Klama J., 2004. Współżycie endofitów bakteryjnych z roślinami. Acta Scientarum Polonorum, Agricultura, 3(1): 19-28.
  • Klama J., Wolna-Maruwka A., Niewiadomska A., 2010. Wpływ koinokulacji bakteriami diazotroficznymi na rozwój siewek pszenicy zwyczajnej. Nauka Przyroda Technologie, 4: 1-7.
  • Kolb W., Martin P., 2006. Response of plant roots to inoculation with Azospirillum brasilense and to application of indoleacetic acid. ss. 215-221. W: Azospirillum III: genetics, physiology, ecology. Klingmüller W. (red.), Springer, Berlin.
  • Król M., 2006. Azospirillum – asocjacyjne bakterie wiążące azot. Monografie i rozprawy naukowe. IUNG-PIB, Puławy, 15: 45-55.
  • Król M., Perzyński A., 2001. Charakterystyka biochemiczna bakterii z rodzaju Azospirillum ryzosfery zbóż. Zeszyty Naukowe Akademii Rolniczej w Szczecinie, 221: 112-116.
  • Lavrinenko K., Chernousova E., Gridneva E., Dubinina G., Akimov V., Kuever J., Lysenko A., Grabovich M., 2010. Azospirillum thiophilum sp. nov., a diazotrophic bacterium isolated from a sulfide spring. International Journal of Systematic and Evolutionary Microbiology, 60: 2832-2837.
  • Liang Y.Y., Kaminski P.A., Elmerich C., 1991. Identification of a nifA-like regulatory gene of Azospirillum brasilense Sp7 expressed under conditions of nitrogen fixation and in the presence of air and ammonia. Molecular Microbiology, 5: 2735-2744.
  • Lucy M., Reed E., Glick B.R., 2004. Applications of free living plant growth-promoting rhizobacteria. Antonie Van Leeuwenhoek, 86: 1-25.
  • Martinez-Argudo I., Little R., Shearer N., Johnson P., Dixon R., 2004. The NifL – NifA system: a multidomain transcriptional regulatory complex that integrates environmental signals. Journal of Bacteriology, 186: 601-610.
  • Masciarelli O., Urbani L., Reinoso H., Luna V., 2013. Alternative mechanism for the evaluation of indole-3-acetic acid (iaa) production by Azospirillum brasilense strains and its effects on the germination and growth of maize seedlings. Journal of Microbiology, 51: 590-597.
  • Okon Y., Itzigsohn R., Burdman R., Hampel M., 1995. Advances in agronomy and ecology of the Azospirillum-plant associations. ss. 635-639. W: nitrogen fixation : fundamentals and applications, Kluwer Acd. Pub., eds: I.A. Tikhonovich i in.
  • Okon Y., Kapulnik Y., 1986. Development and function of Azospirillum-inoculated roots. Plant and Soil, 90: 3-16.
  • Okon Y., Labandera-Gonzalez C.A., 1994. Agronomic application of Azospirillum: An evaluation of 20 years worldwide field inoculation. Soil Biology and Biochemistry, 26: 1591-1601.
  • Omay S.H., Schmidt W.A., Martin P., Bangerth F., 1993. Indoleacetic acid production by the rizosphere bacterium Azospirillum brasilense Cd under in vitro conditions. Canadian Journal of Microbiology, 39: 187-192.
  • Passaglia L.M.P., Van Soom C., Schrank A., Schrank I.S., 1998. Purification and binding analysis of the nitrogen fixation regulatory NifA protein from Azospirillum brasilense. Brazilian Journal of Medical and Biological Research, 31: 1363-1374.
  • Patriguin D.G., 1982. Nitrogen fixation in sugar cane litter. Biological Agriculture and Horticulture, 1: 39-64.
  • Pedrosa F.O., Stephan M., Dobereiner J., Yates M.G., 1982. Hydrogen-uptake hydrogenase activity in nitrogen-fixing Azospirillum brasilense. Journal of General Microbiology, 128: 161-166.
  • Perrig D., Boiero L., Masciarelli O., Penna C., Cassán F., Luna V., 2007. Plant growth promoting compounds produced by two agronomical important strains of Azospirillum brasilense, and their implications for inoculant formation. Applied Microbiology and Biotechnology, 75: 1143-1150.
  • Piccoli P., Bottini R., 1994. Effects of C/N ratio, N content, pH, and incubation time on growth and gibberellin production by Azospirillum lipoferum. Symbiosis, 17: 229-236.
  • Prinsen E., Costacurta A., Michiels K., Vanderleyden J., Van Onckelen H., 1993. Azospirillum brasilense indole-3-acetic acid biosynthesis: Evidence for a nontryptophan dependent pathway. Molecular Plant-Microbe Interactions, 6: 609-615.
  • Rees D.C., Howard J.B., 2000. Nitrogenase: standing of the crossroads. Current Opinion in Chemical Biology, 4: 559-566.
  • Rekosz-Burlaga H., Waszewska M., 2010. Wpływ różnorodności gatunkowej traw i dżdżownic Aporrectodea caliginosa na liczebność Azospirillum spp. w glebie. Nauka Przyroda Technologie, 4: 1-6.
  • Ruppel S., Merbach W., 1995. Effects of different nitrogen sources on nitrogen fixation and bacterial growth of Pantoea agglomerans and Azospirillum sp. in bacterial pure culture:
  • An investigation using 15N2 incorporation and acetylene reduction measures. Microbiological Research, 150: 409-418.
  • Sant’Anna F.H., Almeida L.G.P., Cecagno R., Reolon L.A., Siqueira F.M., Machado M.R.S., Vasconcelos A.T.R., Schrank I.S., 2011. Genomic insights into the versality of the plant growth-promoting bacterium Azospirillum amazonense. BMC Genomics, 12: 409-412.
  • Schloter M., Hartmann A., 1998. Endophytic and surface colonization of wheat roots (Triticum aestivum) by different Azospirillum brasilense strains studied with strain-specific monoclonal antibodies. Symbiosis, 25: 159-179.
  • Steenhoudt O., Vanderleyden J., 2000. Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiology Ecology, 24: 487-506.
  • Strzelczyk E., Kampert M., Li C., 1994a. Cytokinin-like substances and ethylene production by Azospirillum in media with different carbon sources. Microbiological Research, 149: 55-60.
  • Strzelczyk E., Kampert M., Różycki H., Li C., 1994b. Effect of plant growth hormones on growth of Azospirillum sp. in media with different carbon sources. Acta Microbiologica Polonica, 43: 89-95.
  • Swędrzyńska D., Sawicka A., 2010. Wpływ miedzi na bakterie z rodzaju Azospirillum występujące w ryzosferze siewek kukurydzy i pszenicy. Woda – Środowisko – Obszary Wiejskie, 10: 167-178.
  • Tchan Y.T., Zeman M.M., 1995. N2 fixation (C2H2 reduction) in 2,4-dichloro-phenoxyacetic acid (2,4-D) treated wheat inoculated with free-living diazotrophs. Soil Biology and Biochemistry, 4/5: 453-457.
  • Thomas K.C., Spencer M., 1978. Evolution of ethylene by Saccharomyces cerevisiae as influenced by the carbon source for growth and the presence of air. Canadian Journal of Microbiology, 24: 637-642.
  • Tien T.M., Gaskins M.H., Hubbell D.H., 1979. Plant growth substances produced by Azospirillum brasilense and their effect on the growth of pearl millet (Pennisetum americanum L.). Applied and Environmental Microbiology, 37: 1016-1024.
  • Tortora M.L., Díaz-Ricci J.C., 2012. Protection of strawberry plants (Fragaria ananassa Duch.) against anthracnose disease induced by Azospirillum brasilense. Plant and Soil, 356: 279-290.
  • Truba M., Jankowski K., Sosnowski J., 2012. Reakcje roślin na stosowanie preparatów biologicznych. Ochrona Środowiska i Zasobów Naturalnych, 53: 41-52.
  • Van de Broek A., Michiels J., Van Gool A., Vanderleyden J., 1993. Spatial-temporal colonization patterns of Azospirillum brasilense on the wheat root surface and expression of the bacterial nifH-gene during association. Molecular Plant-Microbe Interactions, 6: 592-600.
  • Van de Broek A., Vanderleyden J., 1995. The role of bacterial motility, chemotaxis, and attachment in bacteria-plant interactions. Molecular Plant-Microbe Interactions, 8: 800-810.
  • Van Dommelen A., Keijers V., Vanderleyden J., De Zamaroczy M., 1998. (Methyl)ammonium transport in the nitrogenfixing bacterium Azospirillum brasilense. Journal of Bacteriology, 180: 2652-2659.
  • Van de Broek A., Lambrecht M., Eggermont K., Vanderleyden J., 1999. Auxins upregulate expression of the indole-3-pyruvate decarboxylase gene in Azospirillum brasilense. Journal of Bacteriology, 181: 1338-1342.
  • Venkateswarlu K., Sethunatan N., 1984. Degradation of carbofuran by Azospirillum lipoferum and Streptomyces spp. isolated from flatted alluvial soil. Bulletin of Environmental Contamination and Toxicology, 33: 556-560.
  • Wright A.D., Sampson M.B., Neuffer M.G., Michalczuk L., Slovin J.P., Cohen J.D., 1991. Indole-3-acetic acid biosynthesis in the mutant maize orange pericarp, a tryptophan auxotroph. Science, 254: 998-1000.
  • Zawoznik M.S., Ameneiros M.,. Benavides M.P., Vázquez S., Groppa M.D., 2011. Response to saline stress and aquaporin expression in Azospirillum-inoculated barley seedlings. Applied Microbiology and Biotechnology, 90: 1389-1397.
  • Zhang Y., Burris R.H., Roberts G.P., 1992. Cloning, sequencing, mutagenesis, and functional characterization of draT and draG genes from Azospirillum brasilense. Journal of Bacteriology, 174: 3364-3369.
  • Zhang Y., Burris R.H., Ludden P.W., Roberts G.P., 1993. Posttranslational regulation of nitrogenase activity by anaerobiosis and ammonium in Azospirillum brasilense. Journal of Bacteriology, 175: 6781-6788.
  • Zhang Y., Burris R.H., Ludden P.W., Roberts G.P., 1996. Presence of a second mechanism for the posttranslational regulation of nitrogenase activity in Azospirillum brasilense in response to ammonium. Journal of Bacteriology, 178: 2948-2953.
  • Zhou S., Han L., Wang Y., Yang G., Zhuang L., Hu P., 2013. Azospirillum humicireducens sp. nov., a nitrogen-fixing bacterium isolated from a microbial fuel cell. International Journal of Systematic and Evolutionary Microbiology, 63: 2618-2624.
  • Zimmer W., Bothe H., 1989. The phytohormonal interactions between Azospirillum and wheat. Plant and Soil, 110: 239-247.
  • Zimmer W., Elmerich C., 1991. Regulation of the synthesis of indole-3-acetic acid in Azospirillum. Advances in molecular genetics of plant-microbe interactions, 1: 465-468.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-c9ffdff9-96ff-43f4-8df8-edc538f73849
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.