PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 64 | 3 |

Tytuł artykułu

Mode of life and hydrostatic stability of orthoconic ectocochleate cephalopods: Hydrodynamic analyses of restoring moments from 3D printed, neutrally buoyant models

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Theoretical 3D models were digitally reconstructed from a phragmocone section of Baculites compressus in order to investigate the hydrostatic properties of the orthoconic morphotype. These virtual models all had the capacity for neutral buoyancy (or nearly so) and were highly stable with vertical syn vivo orientations. Body chamber lengths exceeding approximately 40% of the shell length cause buoyancy to become negative with the given modeled proportions. The distribution of cameral liquid within the phragmocone does not change orientation and only slightly influences hydrostatic stability. The mass of cameral liquid required to completely reduce stability, permitting a non-vertical static orientation, would cause the living cephalopod to become negatively buoyant. A concave dorsum does not significantly change the mass distribution and results in a 5° dorsal rotation of the aperture from vertical. The restoring moments acting to return neutrally buoyant objects to their equilibrium position were investigated using 3D-printed models of Nautilus pompilius and Baculites compressus with theoretically equal masses and hydrostatic stabilities to their virtual counterparts. The N. pompilius behaved as an underdamped harmonic oscillator during restoration due to its low hydrostatic stability and drag relative to the B. compressus model. In contrast, the B. compressus model more quickly returns to its equilibrium position without oscillating (overdamped system). The thrust required to overcome such a large restoring moment was explored using several extant cephalopod analogues. Significant angles of displacement were only achieved with coleoid-like thrusts, which were unrealistically high despite the probable similarities in their locomotor design. These maximum bursts of thrust may have been too energetically expensive and would preclude an unusual form of locomotion in a non-vertical orientation. These results suggest baculitids and other orthocones with similar hydrostatic stabilities probably lived a nektic to quasiplanktic mode of life with a primarily vertical orientation and mobility.

Wydawca

-

Rocznik

Tom

64

Numer

3

Opis fizyczny

p.441-460,fig.,ref.

Twórcy

  • Department of Earth and Environmental Sciences, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH 45435, USA
  • Department of Science and Mathematics, Wright State University Lake Campus, Dwyer Hall 219, 7600 Lake Campus Dr., Celina, OH 45822, USA
autor
  • Department of Earth and Environmental Sciences, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH 45435, USA
  • Department of Geology, Bowling Green State University, 190 Overman Hall, Bowling Green, Ohio 43403, USA

Bibliografia

  • 3DFlow. 2018. 3DF Zephyr. Free Edition. 3DFlow, https://www.3dflow.net/3df-zephyr-free/
  • Autodesk Inc. 2017a. Meshmixer 3.3. Autodesk Inc., San Rafael.
  • Autodesk Inc. 2017b. Netfabb 2017.3. Autodesk Inc., San Rafael.
  • Anderson, E.J. and Demont, M.E. 2000. The mechanics of locomotion in the squid Loligo pealei: locomotory function and unsteady hydrodynamics of the jet and intramantle pressure. The Journal of Experimental Biology 203: 2851–2863.
  • Batt, R.J. 1989. Ammonite shell morphotype distribution in the Western Interior Greenhorn sea and some paleoecological implications. Palaios 4: 32–42.
  • Brown, D. 2017. Tracker 4.11.0. Open Source Physics, https://physlets.org/tracker/ [retrieved June 21, 2018]
  • Chamberlain, J.A. 1981. Hydromechanical design of fossil cephalopods. In: M.R. House and J.R. Senior (eds.), The Ammonoidea, 289–336. Systematics Association, London.
  • Chamberlain, J.A. 1990. Jet propulsion of Nautilus: a surviving example of early Paleozoic cephalopod locomotor design. Canadian Journal of Zoology 68: 806–814.
  • Cignoni, P. and Ranzuglia, G. 2014. MeshLab (Version 1.3.3). Visual Computing Lab-ISTI-CNR, Pisa. Available from http://meshlab.sourceforge.net/
  • Collins, D.H., Ward, P.D., and Westermann, G.E.G. 1980. Function of cameral water in Nautilus. Paleobiology 6: 168–172.
  • Crick, G.C. 1912. On the aperture of a baculite from the Lower Chalk of the Chadstock, Somerset. Proceedings of the Malacological Society of London 2: 77–80.
  • Cunningham, J.A., Rahman, I.A., Lautenschlager, S., Rayfield, E.J., and Donoghue, P.C. 2014. A virtual world of paleontology. Trends in Ecology and Evolution 29: 347–357.
  • Denton, E.J. and Gilpin-Brown, J.B. 1961. The buoyancy of the cuttlefish Sepia officinalis (L.). Journal of the Marine Biological Association of the United Kingdom 41: 319–342.
  • Falkingham, P.L. 2012. Acquisition of high resolution three-dimensional models using free, open-source, photogrammetric software. Palaeontologia Electronica 15: 1–15.
  • Fatherree, J.W., Harries, P.J., and Quinn, T.M. 1998. Oxygen and carbon isotopic “dissection” of Baculites compressus (Mollusca: Cephalopoda) from Pierre Shale (Upper Campanian) of South Dakota: implications for paleoenvironmental reconstructions. Palaios 13: 376–385.
  • Fau, M., Cornette, R., and Houssaye, A. 2016. General Palaeontology, Systematics and Evolution (Vertebrate Palaeontology): Photogrammetry for 3D digitizing bones of mounted skeletons: Potential and limits. General Palaeontology, Systematics and Evolution (Vertebrate Palaeontology) 15: 968–977.
  • Frentzen, K. 1937. Ontogenie, phylogenie und systematic der Amaltheen des Lias Deta Suedwestdeutschlands. Abhandlungen der Heidelberger Akademie der Wissenschaften, Mathematisch-naturwissenschaftliche Klasse 1937: 131–236.
  • Greenwald, L. and Ward, P.D. 1987. Buoyancy in Nautilus. In: B.W. Saunders and N.H. Landman (eds.), Nautilus—The Biology and Paleobiology of a Living Fossil. 547–559. Springer, Dordrecht.
  • Hall, J. and Meek, F.V. 1854. Description of new species of fossils, from the Cretaceous formations of Nebraska, with observations upon Baculites ovatus and B. compressus, and the progressive development of the septa in Baculites, Ammonites and Scaphites. Memoirs of the American Academy of Arts and Sciences New Series 5 (2): 379–411.
  • Hauschke, N., Schöllmann, L., and Keupp, H. 2011. Oriented attachment of a stalked cirripede on an orthoconic heteromorph ammonite—implications for the swimming position of the latter. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 202: 199–212.
  • Henderson, R.A. and Price, G.D. 2012. Paleoenvironment and paleoecology inferred from oxygen and carbon isotopes of subtropical mollusks from the late Cretaceous (Cenomanian) of Bathurst Island, Australia. Palaios 27 (9): 617–626.
  • Hoffmann, R. and Keupp, H. 2015. Ammonoid Paleopathology. In: C. Klug, D. Korn, K. De Baets, I. Kruta, and R.H. Mapes (eds.), Ammo noid Paleo biology. Volume 1: From Anatomy to Ecology. Topics in Geobiology 43: 876–926.
  • Hoffmann, R. and Zachow, S. 2011. Non-invasive approach to shed new light on the buoyancy business of chambered cephalopods (Mollusca). Proceedings of the International Association for Mathematical Geosciences, Salzburg 2011 [published online, https://doi.org/10.5242/iamg.2011.0163]
  • Hoffmann, R., Lemanis, R., Falkenberg, J., Schneider, S., Wesendonk, H., and Zachow, S. 2018. Integrating 2D and 3D shell morphology to disentangle the paleobiology of ammonoids: a virtual approach. Palaeontology 61: 89–104.
  • Hoffmann, R., Lemanis, R., Naglik, C., and Klug, C. 2015. Ammonoid Buoyancy. In: C. Klug, D. Korn, K. De Baets, I. Kruta, and R.H. Mapes (eds.), Ammonoid Paleobiology. Volume I: From Anatomy to Ecology. Topics in Geobiology 43: 611–648.
  • Hoffmann, R., Schultz, J.A., Schellhorn, R., Rybacki, E., Keupp, H., Gerden, S.R., Lemanis, R., and Zachow, S. 2014. Non-invasive imaging methods applied to neo- and paleo-ontological cephalopod research. Biogeosciences 11: 2721–2739.
  • Inoue, S. and Kondo, S. 2016. Suture pattern formation in ammonites and the unknown rear mantle structure. Scientific Reports 6: 33689.
  • Jacobs, D.K. and Landman, N.H. 1993. Nautilus—a poor model for the function and behavior of ammonoids? Lethaia 26: 101–111.
  • Keupp, H., Röper, M., and Seilacher, A. 1999. Paläobiologische Aspekte von syn vivo-besiedelten Ammonoideen im Plattenkalk des Ober-Kimmeridgiums von Brunn in Ostbayern. Berliner Geowissenschaftliche Abhandlungen Reihe E Palaeobiologie 30: 121–145.
  • Klinger, H.C. 1980. Speculations on buoyancy control and ecology in some heteromorph ammonites. In: M.R. House and J.R. Senior (eds.), The Ammonoidea. Systematics Association Special Volume 18: 337–355. Academic Press, London.
  • Klug, C. and Hoffmann, R. 2015. Ammonoid septa and sutures. In: C. Klug, D. Korn, K. De Baets, I. Kruta, and R.H. Mapes (eds.), Ammonoid Paleobiology. Volume I: From Anatomy to Ecology. Topics in Geobiology 43: 45–90.
  • Klug, C. and Lehmann, J. 2015. Soft part anatomy of ammonoids: reconstructing the animal based on exceptionally preserved specimens and actualistic comparisons. In: C. Klug, D. Korn, K. De Baets, I. Kruta, and R.H. Mapes (eds.), Ammonoid Paleobiology. Volume 1: From Anatomy to Ecology. Topics in Geobiology 43: 515–538.
  • Klug, C., Riegraf, W., and Lehmann, J. 2012. Soft-part preservation in heteromorph ammonites from the Cenomanian–Turonian Boundary Event (OAE 2) in the Teutoburger Wald (Germany). Palaeontology 55: 1307–1331.
  • Knauss, M.J. and Yacobucci, M.M. 2014. Geographic Information Systems technology as a morphometric tool for quantifying morphological variation in an ammonoid clade. Palaeontologia Electronica 17 (1): 19A.
  • Kröger, B. 2002. On the efficiency of the buoyancy apparatus in ammonoids: evidences from sublethal shell injuries. Lethaia 35: 61–70.
  • Kruta, I., Landman, N., Rouget, I., Cecca, F., and Tafforeau, P. 2011. The role of ammonites in the Mesozoic marine food web revealed by jaw preservation. Science 331: 70–72.
  • Kruta, I., Rouget, I., Landman, N.H., Tanabe, K., and Cecca, F. 2009. Aptychus microstructure in Late Cretaceous Ancyloceratina (Ammonoidea). Lethaia 42: 312–321.
  • Landman, N.H. and Cobban, W.A. 2007. Ammonite touch marks in upper Cretaceous (Cenomanian–Santonian) deposits of the western interior sea. In: N.H. Landman, R.A. Davis, and R.H. Mapes (eds.), Cephalopods Present and Past: New Insights and Fresh Perspectives, 396–422. Springer, Dordrecht.
  • Landman, N.H., and Klofak, S.M. 2012. Anatomy of a concretion: life, death, and burial in the Western Interior Seaway. Palaios 27: 672–693.
  • Landman, N.H., Cochran, J.K., Slovacek, M., Larson, N.L., Garb, M.P., Brezina, J., and Witts, J.D. 2018. Isotope sclerochronology of ammonites (Baculites compressus) from methane seep and non-seep sites in the Late Cretaceous Western Interior Seaway, USA: Implications for ammonite habitat and mode of life. American Journal of Science 318: 603–639.
  • Lemanis, R., Korn, D., Zachow, S., Rybacki, E., and Hoffmann, R. 2016. The evolution and development of cephalopod chambers and their shape. PloS ONE 11: 1–21.
  • Lemanis, R., Zachow, S., Fusseis, F., and Hoffmann, R. 2015. A new approach using high-resolution computed tomography to test the buoyant properties of chambered cephalopod shells. Paleobiology 41: 313–329.
  • Lukeneder, A. 2015. Ammonoid habitats and life history. In: C. Klug, D. Korn, K. De Baets, I. Kruta, and R.H. Mapes (eds.), Ammonoid Paleobiology. Volume 1: From Anatomy to Ecology. Topics in Geobiology 43: 689–791.
  • Lukeneder, A., Harzhauser, M., Müllegger, S., and Piller, W.E. 2010. Ontogeny and habitat change in Mesozoic cephalopods revealed by stable isotopes (δ18O, δ13C). Earth and Planetary Science 296: 103–114.
  • Matsumoto, T. and Obata, I. 1962. Notes on baculites facies. Kaseki 3: 57–63.
  • Mironenko, A.A. 2018. Endocerids: suspension feeding nautiloids? Historical Biology [published online, https://doi.org/10.1080/08912963.2018.1491565]
  • Moseley, H. 1838. On the geometrical form of turbinated and discoid shells. Philosophical Transactions of the Royal Society 1838: 351–370.
  • Naglik, C., Monnet, C., Goetz, S., Kolb, C., De Baets, K., Tajika, A., and Klug, C. 2015a. Growth trajectories of some major ammonoid subclades revealed by serial grinding tomography data. Lethaia 48: 29–46.
  • Naglik, C., Rikhtegar, F., and Klug, C. 2016. Buoyancy of some Palaeozoic ammonoids and their hydrostatic properties based on empirical 3D models. Lethaia 49: 3–12.
  • Naglik, C., Tajika, A., Chamberlain, J., and Klug, C. 2015b. Ammonoid locomotion. In: C. Klug, D. Korn, K. De Baets, I. Kruta, and R.H. Mapes (eds.), Ammonoid Paleobiology. Volume I: From Anatomy to Ecology. Topics in Geobiology 43: 649–688.
  • Neil, T. and Askew, G.N. 2018. Swimming mechanics and propulsive efficiency in the chambered nautilus. Royal Society Open Science 5: 170467.
  • Okamoto, T. 1996. Theoretical modeling of ammonoid morphology. In: N.H. Landman, K. Tanabe, and R.A. Davis (eds.), Ammonoid Paleobio logy. Topics in Geobiology 13: 225–251. Plenum, New York.
  • Parent, H., Westermann, G.E.G., and Chamberlain, J.A. Jr. 2014. Ammonite aptychi: functions and role in propulsion. Geobios 47: 45–55.
  • Peterman, D.J. and Barton, C.C. 2017. Baculite 3D Modeling: A New Method for Computing Buoyancy, Stability, and Orientation with Implications for Ectocochleate Cephalopod Hydrostatics. Abstract PP11D-1063 presented at 2017 Falling Meeting, AGU, New Orleans, Louisiana.
  • Peterman, D.J. and Barton, C.C. 2019. Power scaling of ammonitic suture patterns from Cretaceous Ancyloceratina: constraints on septal/sutural complexity. Lethaia 52: 77–90.
  • Peterman, D.J. and Ciampaglio. C.N. 2018. How stable were orthoconic cephalopods? Hydrodynamic analyses of restoring moments from neutrally buoyant, 3D printed models of ectocochleate cephalopods. Geological Society of America Annual Meeting in Indianapolis, Abstracts with Programs 50: 6.
  • Peterman, D.J., Barton, C.C., and Yacobucci, M.M. 2019. The hydrostatics of Paleozoic ectocochleate cephalopods (Nautiloidea and Endoceratoidea) with implications for modes of life and early colonization of the pelagic zone. Palaeontologia Electronica [published online, https://doi.org/10.26879/884]
  • Peterman, D.J, Ciampaglio, C.N., and Barton. C.C. 2018. The hydrostatics of Paleozoic orthoconic cephalopods (Nautiloidea) with implications for early colonization of the pelagic zone. Geological Society of America Annual Meeting in Indianapolis, Abstracts with Programs 50: 4.
  • Petti, F.M., Avanzini, M., Belvedere, M., De Gasperi, M., Ferretti, P., Girardi, S., Remondino, F., and Tomasoni, R. 2008. Digital 3D modelling of dinosaur footprints by photogrammetry and laser scanning techniques: integrated approach at the Coste dell’Anglone tracksite (Lower Jurassic, southern Alps, northern Italy). Studi Trentini di Scienze Naturali Acta Geologica 83: 303–315.
  • Raup, D.M. 1967. Geometric analysis of shell coiling: coiling in ammonoids. Journal of Paleontology 41: 43–65.
  • Raup, D.M. and Chamberlain, J.A. 1967. Equations for volume and center of gravity in ammonoid shells. Journal of Paleontology 41: 566–574.
  • Reyment, R.A. 1958. Some factors in the distribution of fossil cephalopods. Stockholm Contributions in Geology 1: 97–184.
  • Reyment, R.A. 1973. Factors in the distribution of fossil cephalopods; Part 3, Experiments with exact models of certain shell types. Bulletin of the Geological Institutions of the University of Uppsala, New Series 4 2: 7–41.
  • Say, T. 1820. Observations on some species of zoophytes, shells, etc. principally fossil. American Journal of Science 2: 34–45.
  • Saunders, W.B. and Shapiro, E.A. 1986. Calculation and simulation of ammonoid hydrostatics. Paleobiology 12: 64–79.
  • Schmidt, H. 1930. Ueber die Bewegungsweise der Schalencephalopoden. Palaeontologische Zeitschrift 12: 194–208.
  • Seilacher, A. and Gishlick, A.D. 2015. Morphodynamics. 531 pp. CRC Press Taylor & Francis Group, Boca Raton, Florida.
  • Seilacher, A. and Keupp, H. 2000. Wie sind Ammoniten geschwommen? Fossilien 2000: 310–313.
  • Sessa, J.A., Larina, E., Knoll, K., Garb, M., Cochran, J.K., Huber, B.T., MacLeod, K.G., and Landman, N.H. 2015. Ammonite habitat revealed via isotopic composition and comparisons with co-occurring benthic and planktonic organisms. Proceedings of the National Academy of Sciences of the United States of America 112: 15562–15567.
  • Sessa, J.A., Ferguson, K., Landman, N.H., and MacLeod, K.G. 2018. Using isotopic composition to determine growth and ecology in baculite and scaphite ammonites. Geological Society of America Abstracts with Programs 50 (6) [published online, https://doi.org/10.1130/abs/2018AM-319800]
  • Shigeta, Y. 1993. Post-hatching early life history of Cretaceous Ammonoidea. Lethaia 26: 133–146.
  • Summesberger H., Jurkovsek, B., and Kolar-Jurkovsek, T. 1999. Rollmarks of soft parts and possible crop content of Late Cretaceous ammonites from the Slovenian karst. In: F. Olóriz and F.J. Rodríguez-Tovar (eds.), Advancing Research on Lliving and Fossil Cephalopods, 335–344. Kluwer Academic, New York.
  • Sutton, M.D., Rahman, I.A., and Garwood, R.J. 2014. Techniques for Virtual Palaeontology. 208 pp. John Wiley & Sons Inc., Chichester.
  • Tajika, A., Morimoto, N., Wani, R., Naglik, C., and Klug, C. 2015a. Intraspecific variation of phragmocone chamber volumes throughout ontogeny in the modern nautilid Nautilus and the Jurassic ammonite Normannites. PeerJ 3: 1–28.
  • Tajika, A., Naglik, C., Morimoto, N., Pascual-Cebrian, E., Hennhöfer, D.K., and Klug, C. 2015b. Empirical 3D-model of the conch of the Middle Jurassic ammonite microconch Normannites, its buoyancy, the physical effects of its mature modifications and speculations on their function. Historical Biology 27: 181–191.
  • Tanabe, K., Shigeta, Y., and Mapes, R.H. 1995. Early life history of Carboniferous ammonoids inferred from analysis of fossil assemblages and shell hydrostatics. Palaios 10: 80–86.
  • Teichert, C. 1964. Morphology of hard parts. In: R.C. Moore (ed.), Treatise on Invertebrate Paleontology Part K Mollusca 3, K12–K53. Geological Society of America, Boulder, and University of Kansas Press, Lawrence.
  • Thompson, J.T. and Kier, W.M. 2002. Ontogeny of squid mantle function: changes in the mechanics of escape-jet locomotion in the oval squid, Sepioteuthis lessoniana Lesson, 1830. Biological Bulletin 203: 14–26.
  • Trueman, A.E. 1941. The ammonite body-chamber, with special reference to the buoyancy and mode of life of the living ammonite. Quarterly Journal of the Geological Society 384: 339–383.
  • Tsujita, C.J. and Westermann, G.E.G. 1998. Ammonoid habitats and habits in the Western Interior Seaway: a case study from the Upper Cretaceous Bearpaw Formation of southern Alberta, Canada. Palaeogeo graphy, Palaeoclimatology, Palaeoecology 144: 135–160.
  • Ward, P.D. 1976. Stratigraphy, Paleoecology and Functional Morphology of Heteromorph Ammonites of the Upper Cretaceous Nanaimo Group, British Columbia and Washington. 191 pp. Unpublished Ph.D. dissertation, McMaster University, Department of Geology, Hamilton.
  • Ward, P.D. 1979. Cameral liquid in Nautilus and ammonites. Paleobiology 5: 40–49.
  • Ward, P.D. 1987. The Natural History of Nautilus. 267 pp. Allen and Unwin, Boston.
  • Westermann, G.E.G. 1977. Form and function of orthocone cephalopod shells with concave septa. Paleobiology 3: 300–321.
  • Westermann, G.E.G. 1996. Ammonoid life and habitat. In: N.H. Landman, K. Tanabe, and R.A. Davis (eds.), Ammonoid Paleobiology, 607–707. Plenum, New York.
  • Westermann, G.E.G. 2013. Hydrostatics, propulsion and life-habits of the Cretaceous ammonoid Baculites. Revue de Paléobiologie 32: 249–265.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-c85c130b-6130-455a-a425-84cc8eb759b8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.