PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2016 | 1[2] |

Tytuł artykułu

Tokotrienole - mniej znana strona witaminy E

Autorzy

Warianty tytułu

EN
Tocotrienols - lesser known side of vitamin E

Języki publikacji

PL

Abstrakty

PL
Witaminę E stanowi grupa ośmiu związków – tokochromanoli (czterech tokoferoli i czterech tokotrienoli), wykazujących aktywność najaktywniejszego i najważniejszego przedstawiciela: α-tokoferolu. Do niedawna uwaga badaczy skupiała się niemal wyłącznie na α-tokoferolu, który jest preferencyjnie zatrzymywany w organizmie, gdzie pełni liczne funkcje: antyoksydacyjną, stabilizującą i regulującą właściwości strukturalno-funkcjonalne błon komórkowych, a także regulującą aktywność licznych enzymów. Pozostałe tokoferole i tokotrienole są szybko metabolizowane i wydalane z organizmu. Z tego względu traktowano je jako zbędne i nie przypisywano im większego znaczenia biologicznego. Od kilku dekad wzrasta zainteresowanie badaczy innymi tokochromanolami, zwłaszcza γ-tokoferolem oraz tokotrienolami, które wykazują często aktywność biologiczną całkowicie odmienną niż α-tokoferol. Tokotrienole obniżają poziom cholesterolu hamując reduktazę HMG-CoA, kluczowy enzym w biosyntezie cholesterolu. Wykazują aktywność przeciwnowotworową przeciwdziałając angiogenezie i proliferacji komórek, a także indukując apoptozę i wzmacniając układ odpornościowy. W stężeniach nanomolowych działają neuroprotekcyjnie, szczególnie chroniąc komórki nerwowe przed toksycznym działaniem glutaminianu. Wykazują także działanie kardioprotekcyjne, a także antyosteoporotyczne. W artykule przedstawione zostały najważniejsze aspekty działania biologicznego tokotrienoli, które przejawiają interesujące działanie prozdrowotne w aspekcie zarówno suplementacji, jaki potencjalnych zastosowań terapeutycznych.
EN
Vitamin E is composed of eight compounds – tocochromanols (four tocopherols and four tocotrienols), that reveal antioxidant activity of the most active and the most important representative: α-tocopherol. Until recently the scientific interest has been focused almost exclusively on α-tocopherol, that is preferentially retained in the organism, in which it Vitamin E is composed of eight compounds – tocochromanols (four tocopherols and four tocotrienols), that reveal antioxidant activity of the most active and the most important representative: α-tocopherol. Until recently the scientific interest has been focused almost exclusively on α-tocopherol, that is preferentially retained in the organism, in which it Vitamin E is composed of eight compounds – tocochromanols (four tocopherols and four tocotrienols), that reveal antioxidant activity of the most active and the most important representative: α-tocopherol. Until recently the scientific interest has been focused almost exclusively on α-tocopherol, that is preferentially retained in the organism, in which it plays numerous functions: antioxidative, stabilizing and regulating structural and functional properties of molecular membranes as well as regulating activity of numerous enzymes. Other tocopherols and tocotrienols are fastly metabolized and excreted. For this reason they were regarded as redundant and the aspects of their biological activity were ignored. For last decades the interest in other tocochromanols has been increased, especially that in γ-tocopherol and tocotrienols, that show biological activity often not shared by α-tocopherol. Tocotrienols lower cholesterol level via inhibition of HMG-CoA reductase, the key enzyme in cholesterol biosynthesis. They show anticancer activity by counteracting angiogenesis and proliferation as well as by induction of apoptosis and improving of immunological functions. At nanomolar concentration they demonstrate neuroprotecting activity especially from glutamate-toxicity. They also show cardioprotective and antiosteoporotic action. In the article the most important aspects of biological activity of tocotrienols are presented. They show many beneficial properties in aspects of suplementation and potential therapeutical application.

Wydawca

-

Czasopismo

Rocznik

Numer

Opis fizyczny

s.7-21,rys.,tab.,bibliogr.

Twórcy

autor
  • Instytut Chemii, Uniwersytet w Białymstoku, ul.Ciołkowskiego 1k, 15-245 Białystok

Bibliografia

  • [1] Evans H.M., Bishop K.S., On the existence of the hitherto unrecognized dietary factor essentials for reproduction, Science, 1922, 56, s. 650–651.
  • [2] Azzi A., Stocker A., Vitamin E: non-antioxidant roles, Progress in Lipid Research. 2000, 39, s. 231–255.
  • [3] Yamamoto Y., Fujisawa A., Hara A., Dunlap W.C., An unusual vitamin E constituent (-tocomonoenol) provides enhanced antioxidant protection in marine organisms adapted to cold-water environments, Proceeding of the National Academy of Sciences, 2001, 98, s. 13144–13148.
  • [4] Shen Y., Lebold K., Lansky E.P., Traber M.G., Nevo E., ‘Tocol-omic’ Diversity in Wild Barley, Short Communication, Chemistry and Biodiversity, 2011, 8, s. 2322–2330.
  • [5] Butinar B., Bucar-Miclavic M., Mariani C., Raspor P., New vitamin E isomers (gamma-tocomonoenol and alpha-tocomonoenol) in seeds, roasted seeds and roasted seed oil from the Slovenian pumpkin variety ‘Slovenska golica’, Food Chemistry, 2011, 128, s. 505–512.
  • [6] Qureschi A.A., Mo H., Packer L., Peterson D.M., Isolation and identification of novel tocotrienols from rice bran with hypocholesterolemic, antioxidant, and antitumor properties, Journal of Agricultural and Food Chemistry, 2000, 48, s. 3130–3140.
  • [7] Netscher T., Synthesis and production of vitamin E. „Lipids synthesis and Manufacture” (F.D.Gunstone Ed.), Shifield Academic Press Ltd., Shifield UK, s. 250–267.
  • [8] Saldeen K., Saldeen T., Importance of tocopherols beyond α-tocopherol: evidence from animal and human studies, Nutrition Research, 2005, 25, s. 877–889.
  • [9] Aggarwal B.B., Sundaram Ch., Prasad S., Kannappan R. Tocotrienols, the vitamin E of the 21st century: its potential against cancer and other diseases, Biochemical Pharmacology, 2010, 80, s. 1613–1631.
  • [10] Sen C.K., Khanna S., Rink C., Roy S., Tocotrienols: the emerging face of natural vitamin E, Vitamins and Hormones, 2007, 76, s. 203–261.
  • [11] Horvath G.,Wessjohann L., Bigirimana J., Jansen M., Guisez Y., Caubergs R., Horemans N., Differential distribution of tocopherols and tocotrienols in photosynthetic and non-phoptosynthetic tissues, Phytochemistry, 2006, 67, s. 1185–1195.
  • [12] Vasanthi H.R., Parameswar R.P., Das D.K., Sundram K., Gapor A., Lipid-lowering property of tocotrienols in cardioprotection, Lipid Technology, 1992, 4, s. 137–141.
  • [13] Shepard A.J., Pennington J.A.T., Weihrauch J.L., Analysis and distribution of vitamin E in vegetable oils and foods, Packer L., Fuchs J. eds. Vitamin E in Health and Disease, 1993, s. 9–31, Marcell Dekker, Inc. New York NY.
  • [14] Ong A.S.H., Natural sources of tocotrienols, Packer L., Fuchs J. eds., Vitamin E in Health and Disease, 1993, s. 3–8. Marcell Dekker, Inc., New York, NY.
  • [15] Sundram K., Sambathamurti R., Tan Y.A., Palm fruit chemistry and nutrition, Asia Pacific Journal of Clinical Nutrition, 2003, 12, s. 355–362.
  • [16] Frega N., Mozzon M., Bocci F., Identification and estimation of tocotrienols in the anatto lipid fraction by gas chromatography-mass spectrometry, Journal of the American Oil Chemists’ Society, 1998, 75, s. 1723–1727.
  • [17] Tan B., Tocotrienols: the New Vitamin E. Spacedocnet, www.spacedocnet.net. 2010.
  • [18] Serbinova E., Kagan V., Han D., Packer L., Free radical and intramembrane mobility in the antioxidant properties of alpha-tocopherol and alpha-tocotrienol, Free Radical Biology and Medicine, 1991, 10, s. 263–275.
  • [19] Suarna C., Hood R.L., Dean R.T., Stocker R., Comparative antioxidant activity of tocotrienols and other natural lipid soluble antioxidants in homogenous system, and in rat and human lipoprotein, Biochimica et Biophysica Acta, 1993, 1166, s. 163–170.
  • [20] Packer L., Weber S.U., Rimbach G., Molecular Aspects of α-Tocotrienol Antioxidant Action of Cell Signalling, Journal of Nutrition, 2001, 131, s. 369–373.
  • [21] Yoshida Y., Saito Y., Jones L.S., Shigeri Y., Chemical Reactivities and Physical Effects in Comparison between Tocopherols and Tocotrienols: Physiological Significance and Prospects as Antioxidants, Journal of Bioscience and Bioengineering, 2007, 104, s. 439–445.
  • [22] Jacobson K., Mouritsen O.G., Andersen R.G.W., Lipid rafts: at a crossroad between cell biology and physics, Nature Cell Biology, 2007, 9, s. 7–13.
  • [23] Suzuki Y.J., Tsuchiya M., Wassal S.R., Choo Y.M., Govil G., Kagan V.E., Packer L., Structural and dynamic membrane properties of alpha-tocopherol and alpha-tocotrienol: implication to the molecular mechanism ot their antioxidant potency, Biochemistry, 1993, 32, s. 10692–10699.
  • [24] Zingg J.M. Azzi A., Non-antioxidant activities of vitamin E, Current Medicinal Chemistry, 2004, 11, s. 1113–1133.
  • [25] Lemaire-Awing S., Desrumaux C., Neel D., Lagrost L., Vitamin E transport, membrane incorporation and cell metabolism: Is α-tocopherol in lipid rafts an oar in the lifeboat?, Molecular Nutrition and Food Research, 2010, 54, s. 631–640.
  • [26] Stocker A., Molecular mechanisms of vitamin E transport, Annals of the New York Academy of Sciences, 2004, 1031, s. 44–59.
  • [27] Jiang Q., Natural forms of vitamin E: metabolism, antioxidant, and anti-inflammatory activities and their role in disease prevention and therapy, Free Radical Biology and Medicine, 2014, 72, s. 76–90.
  • [28] Hosomi A., Arita M., Sato Y., Kiyose C., Ueda T., Igarashi O., Arai H., Inoue K., Affinity for α-tocopherol transfer protein as a determinant of the biological activities of vitamin E analogs, FEBS Letters, 1997, 409, s. 105–108.
  • [29] Sontag T.J., Parker R.S., Influence of major structural features of tocopherols and tocotrienols on their omega-oxidation by tocopherol-omega-hydroxylase, Journal of Lipid Research, 2007, 48, s. 789–800.
  • [30] Grammas P., Hamdheydari L., Benaksas E.J., Mou S., Pye Q., Wechter W.J., Floyd R., Stewart C., Hensley K., Anti-inflammatory effects of tocopherol metabolites, Biochemical and Biophysical Research Communications, 2004, 319, s. 1047–1054.
  • [31] Jiang Q., Jin X., Lill M.A., Danielson M.L., Freiser H., Huang J., Long-chain carboxychromanols, metabolites of vitamin E, are potent inhibitors of cycloxygenases., Proceedings of the National Academy of Sciences, 2008, 105, s. 20464–20469.
  • [32] Wallert M., Mosig S., Rennert K., Funke H., Ristow M., Pellegrino R.M, Cruciani G., Galli F., Lorkowski S., Birringer M., Long-chain metabolites of α-tocopherol occur in human serum and inhibit macrophage foam cell formation in vitro, Free Radical Biology and Medicine, 2014, 68, s. 43–51.
  • [33] Jiang Q., Elson-Schwab I., Courtemanche C., Ames B.N., Gamma-tocopherol and its major metabolite, in contrast to alpha-tocopherol, inhibit cyclooxygenase activity in macrophages and epithelial cells, Proceedings of the National Academy of Sciences, 2000, 97, s. 11494–11499.
  • [34] Wechter W.J., Kantoci D., Murray Jr, E.D., D’Amico D.C., Jung M.E. Wang W.H., Kantoci D., Wechter W.J., Murray Jr., E.D., Dewind S.A., Borchardt D. Saeed I., Khan S.I., Endogenous natriuretic factors 6: the stereochemistry of a natriuretic gamma-tocopherol metabolite LLU-alpha, Journal of Pharmacology and Experimental Therapeutics, 1997, 282, s. 648–656.
  • [35] Hayes K.C., Pronczuk A., Liang J.S., Differences in the plasma transport and tissue concentration of tocopherols and tocotrienols: observations in human and hamsters., Proceedings of Society Experimental Biology and Medicine, 1993, 2002, s. 353–359.
  • [36] Podda M., Weber C., Traber M.G., Packer L. Simultaneous determination of tissue tocopherols, tocotrienols, ubiquinols, and ubiquinones, Journal of Lipid Research, 1996, 37, s. 893–901.
  • [37] Sen C.K., Khanna S., Roy S., Tocotrienols: vitamin E beyond tocopherols, Life Sciences, 2006, 78, s. 2088–2098.
  • [38] Sookwong P., Nakagawa K., Yamaguchi Y, Miyazawa T, Kato S., Kimura F., Miyazawa T., Tocotrienol Distribution in Foods: Estimation of dayly Tocotrienol Intake of Japanese Population, Journal of Agricultural and Food Chemistry, 2010, 58, s. 3350–3355.
  • [39] Ikeda S., Uchida T., Ichikawa T., Watanabe T., Uekaji Y., Nakata D., Terao K., Yano T., Complexation of Tocotrienol with γ-cyclodextrin Enhances Intestinal Absorption of Tocotrienol in Rats, Bioscience, Biotechnology and Biochemistry, 2010, 74, s. 1452–1457.
  • [40] Khosla P., Patel V., Whinter J., Rakhkovskaya M., Roy S., Sen C.K., Postprandial levels of the natural vitamin E tocotrienol in human circulation, Antioxidants and Redox Signaling, 2006, 8, s. 1059–1068.
  • [41] Parker R.A., Pearce B.C., Clark R.W., Gordon D.A., Wright J.J., Tocotrienols regulate cholesterol production in mammalian cells by post-trancritptional suppression of 3-hydroxy-3-methylglutaryl-coenzyme A reductase, Journal of Biological Chemistry, 1993, 268, s. 11230–11238.
  • [42] Pearce B.C., Parker R.A., Deason M.E., Dischino D.D., Gillespie E., Qureshi A.A., Volk K., Wright J.J., Inhibitors of cholesterol biosynthesis. 2. Hypocholesterolemic and antioxidant activities of benzopyran and tetrahydronaphthalene analogues of the tocotrienols, Journal of Medicinal Chemistry, 1994, 37, s. 526–541.
  • [43] Pearce B.C., Parker R.A., Deason M.E., Qureshi A.A., Wright J.J., Hypocholesterolemic activity of synthetic and natural tocotrienols, Journal of Medicinal Chemistry, 1992, 35, s. 3595–3606.
  • [44] Quereschi A.A., Sami S.A., Salser W.A., Khan F.A. Dose-dependent suppression of serum cholesterol by tocotrienol-rich fraction (TRF25) of rice bran in hypercholesterolemic humans, Atherosclerosis, 2002, 161, s. 199–207.
  • [45] Elson C.E., Qureshi A.A., Coupling of cholesterol- and tumor-suppressive action of palm oil to the impact of its minor constituent of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity, Prostaglandins, Leukotrienes and Essential Fatty Acids, 1995, 52, s. 205–207.
  • [46] Yu W., Simmons-Menchaca M., Gapor A., Sanders B.G., Kline K., Induction of apoptosis in human brest cancer cells by tocopherols and tocotrienols, Nutrition and Cancer, 1999, 33, s. 26–32.
  • [47] Thierault A., Chao J.T., Wang Q., Gapor A., Adeli K., Tocotrienol: a review of its therapeutic potential, Clinical Biochemistry, 1999, 32, s. 309–319.
  • [48] Sigounas G., Anagnostou A., Steiner M., DL-Alpha-tocopherol induces apoptosis in erytroleukemia, prostate, and brest cancer cells, Nutrition Research, 1997, 28, s. 30–35.
  • [49] Miyazawa T., Shibata A., Sookwong P., Kawakami Y., Eitsuka T., Asai A., Oikawa S., Nakagawa K., Antiangiogenic and anticancer potential of unsaturated vitamin E (tocotrienol), Journal of Nutritional Biochemistry, 2009, 20, s. 79–86.
  • [50] Kashiwagi K., Harada K., Yano Y., Kumadaki Y., Hagiwara K., Takebayashi J., Kido W., Virgona N., Yano T., A redox-silent analogue of tocopherol inhibits hypoxic adaptation of lung cancer cells, Biochemical and Biophysical Research Communications, 2008, 365, s. 875–881.
  • [51] Hiura Y., Tachibana H., Arakawa R., Aoyama N., Okabe M., Sakai M., Yama K., Specific accumulation of γ- and δ-tocotrienols in tumor and their antitumor effect in vivo, Journal of Nutritional Biochemistry, 2009, 20, s. 607–613.
  • [52] Yap W.N., Chang P.N., Han H.Y,, Lee D.T., Ling M.T., Wong Y.C., Yap Y.L., Gamma-tocotrienol suppresses prostate cancer cell proliferation and invasion through multiple-signalling pathways, British Journal of Cancer, 2008, 9, s. 1832–1841.
  • [53] Husain K., Francois R.A., Yamauchi T., Perez M., Sebti S.M., Malafa M.P., Vitamin E delta-tocotrienol augments the antitumor activity of gentacibine and suppression constitutive NF-kappaB activation in pancreas cancer, Molecular Cancer Therapeutics, 2011, 10, s. 2363–2372.
  • [54] Husain K., Francois R.A., Hutchinson S.Z., Neuger A.M., Lush R, Coppola D. Sebti S., Malafa M.P., Vitamin E δ-Tocotrienol Levels in Tumor and Pancreatic Tissue of Mice after Oral Administration, Pharmacology, 2009, 83, s. 157–163
  • [55] Muller D.P., Goss-Sampson M.A., Role of vitamin E in neural tissue, Annals of the New York Academy of Sciences, 1989, 570, s. 146–155.
  • [56] Muller D.P., Goss-Sampson M.A., Neurochemical, neurophysiological, and neuropathological studies in vitamin E deficiency, Critical Reviews in Neurobiology, 1990, 5, s. 239–263.
  • [57] Sen C.K., Khanna S., Roy S., Tocotrienol. The Natural Vitamin E to Defend the Nervous System?, Annals of the New York Academy of Sciences, 2004, 1031, s. 127–142.
  • [58] Khanna Roy S., Ryu H., Bahadduri P., Swaan P.W., Ratan R.R., Sen C.K., Molecular basis of vitamin E action: tocotrienol modulates 12-lipoxygenase, a key mediator of glutamate induced neurodegeneration, Journal of Biological Chemistry, 2003, 278, s. 43508–43515.
  • [59] Sen C.K., Khanna S., Roy S., Pocker L., Molecular basis of vitamin E action. Tocotrienol potently inhibits glutamate-induced pp60(c-Src) kinase activation and death of HT-4 neuronal cells, Journal of Biological Chemistry, 2000, 275, s. 13049–13055.
  • [60] Prothi S., Allison T.G., Hensrod D.D., Vitamin E supplementation in the prevention of coronary heart disease, Mayo Clinic Proceedings, 2001, 76, s. 1131–1136.
  • [61] Khanna S., Roy S., Slivka A., Craft T.K., Chaki S., Rink C., et. al. Neuroprotective properties of the natural vitamin E alpha-tocotrienol, Stroke, 2005, 36, s. 2258–2264.
  • [62] Weber C., Podda M., Rallis M., Thiele J.J., Traber M.G., Packer L., Efficacy of topically aplied tocopherol and tocotrienols in protection of marine skin from oxidative damage induced bu UV-irradiation, Free Radical Biology and Medicine, 1997, 22, s. 761–769.
  • [63] Ikeda S., Tohyama T., Yoshimura H., Hamamura K., Abe K., Yamashita K., Dietary α-tocopherol decreases α-tocotrienol but not γ-tocopherol concentration in rats, Journal of Nutrition, 2003, 133, s. 428–434.
  • [64] Chin K.Y., Abdul Majeed S., Fozi N.F.M., Ima-Nirwana S. Annatto, Tocotrienol Improves Indices of Bone Static Histomorphometry in Osteoporosis Due to Testosterone Deficiency in Rats, Nutrients, 2014, 6, s. 4974–4983.
  • [64] Chin K.Y., Ima-Nirwana S., The effects of alpha-tocopherol on bone: A double-edged sword?, Nutrients, 2014, 6, s. 1424–1441.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-c7921928-56be-444f-93a1-f2a0fa986552
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.