PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 17 | 2 |

Tytuł artykułu

Atmospheric radon concentration around a phosphogypsum stack at Wislinka (Northern Poland)

Treść / Zawartość

Warianty tytułu

PL
Stężenie radonu w atmosferze w okolicy hałdy fosofgipsów w Wiślince (Pólnocna Polska)

Języki publikacji

EN

Abstrakty

EN
The measurements of atmospheric radon concentration were carried out for one year at the turn of 2008/2009, using Kodak LR 115 passive track detectors. The average atmospheric radon activity near the phosphogypsum stack was 104 Bq m–3. This is below the level accepted for indoor air. The results indicate that there are strong positive correlations between radon concentration and temperature (r=0.9) or atmospheric pressure (r=0.9) and a negative correlation between radon concentration and humidity (r=-0.7) or wind velocity (r=-0.7). Moreover, for all monitoring points the correlation between radon atmospheric concentrations measured in four seasons of the year were analyzed. The correlation coefficients are as follows: winter-summer 0.7, winter-autumn 0.2, winter-spring 0.2. Influence of radon exhalation from the stack was especially distinct in winter when the background radon activity was low. Spring and autumn farmland cultivation works increase radon exhalation from the soil, so that the contribution of radon emitted from the stack was less obvious.
PL
Pomiary stężenia radonu w atmosferze przeprowadzono w ciągu jednego roku, na przełomie lat 2008/2009, z użyciem detektorów Kodak LR-115. średnie stężenie radonu w atmosferze wynosiło 104 Bq m–3, co jest wartością poniżej dopuszczalnego stężenia tego gazu w budynkach mieszkalnych. Wykazano silne dodatnie korelacje między stężeniem radonu i temperaturą (r=0.9), i ciśnieniem atmosferycznym (r=0.9) oraz ujemne korelacje między stężeniem radonu a wilgotnością powietrza (r=-0.7) oraz prędkością wiatru (r=-0.7). Ponadto obliczono korelację między stężeniami radonu zarejestrowanymi w wyznaczonych punktach pomiarowych w poszczególnych sezonach. Współczynniki korelacji w sezonach: zima – lato, zima – jesień, zima – wiosna wynoszą odpowiednio: 0,7; 0,2; 0,2. Wpływ ekshalacji radonu z hałdy na stężenie radonu w atmosferze jest szczególnie widoczny w sezonie zimowym, w którym poza obszarami sąsiadującymi z hałdą rejestruje się najniższe w roku stężenie tego gazu. Wiosną i jesienią prace rolnicze wpływają na wzrost ekshalacji radonu z gruntu, przez co udział radonu, który wydostał się z hałdy, staje się mniej wyrazisty.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

17

Numer

2

Opis fizyczny

p.317-328,fig.,ref.

Twórcy

  • Institute of Geological Sciences, University of Wroclaw

Bibliografia

  • Abrill J.M., GarcÍa-Tenorio R., Enamorado S.M., Hurtado M.D., Andreu L., Delgado A. 2008. The cumulative effect of three decades of phosphogypsum amendments in reclaimed marsh soils from SW Spain: 226Ra, 238U, and Cd contents in soils and tomato fruit. Sci. Total. Environ., 403: 80-88.
  • Abrill J.M., GarcÍa-Tenorio R., Manjón G. 2009. Extensive radioactive characterization of phosphogypsum stack in SW Spain: 226Ra, 238U, 210Po concentrations and 222Rn exhalation rate. J. Hard. Matter., 164: 790-197.
  • Abrill J.M., GarcÍa-Tenorio R., Periańez R., Enamorado S.M., Andreu L., Delgado A. 2009. Occupational dosimetric assessment (inhalation pathway) from the application of phosphogypsum in agriculture in South West Spain. J. Environ. Radioactiv., 100: 29-34.
  • Beretka J., Mathew P.J. 1985. Natural radioactivity of Australian building materials, industrial wastes and by-products. Health Phys., 48: 87-95.
  • Biernacka M., Henschke J., Jagielak J. 1991. Radiation atlas of Poland. Central Laboratory for Radiological Protection. Warsaw. (In Polish)
  • Biernacka M., Isajenko K., Mamont-Cieśla K., Żak A. 2005. Radiological research in the vicinity of a phosphogypsum stack in Wiślinka. Central Laboratory for Radiological Protection. (In Polish)
  • BolÍvar J.P., Pérez-Moreno J.P., Mas J.L., MartÍn J.E., San Miguel E.G., GarcÍa-Tenorio R. 2009. External radiation assessment in a wet phosphoric acid production plant. Appl. Radiat. Isotopes, 67: 1930-1938.
  • Borrego E., Mas J.L., MarÍtn J.E., BolÍvar J.P., Vaca F., Aguado J.L. 2007. Radioactivity levels in aerosol particles surrounding a large TENORM waste repository after application of preliminary restoration work. Sci. Total Environ., 377: 27-35.
  • Burnett W.C., Schultz M.K., Carter D.H. 1996. Radionuclide flow during the conversion of phosphogypsum to ammonium sulfate. J. Environ. Radioactiv., 32: 33-51.
  • Chauhan R.P., Chakarvarti S.K. 2002. Radon diffusion through soil and fly ash: effect of compaction. Radiat. Meas., 35: 143-146.
  • Cigolini C., Poggi P., Ripepe M., Laiolo M., Ciamberlini C., Delle Done D., Ulivieri G., Coppola D., Laccana G., Marchetti E., Piscopo D., Genco R. 2009. Radon surveys and real time monitoring at Stromboli volcano: Influence of temperature, atmospheric pressure and tidal forces on 222Rn degassing. J. Volcanol. Geoth. Res., 184: 381-388.
  • Clements W.E., Wilkening M.H. 1974. Atmospheric pressure effect on 222Rn transport across the earth-air interface. J. Geophys. Res., 79 (33): 5025-5029.
  • Cosma C., Baciu C., Ristoiu D. 1999. Some aspects of radon potential in soil land underground waters in the Somesul Mic Hudrographic basin (North-Western Romania). Proc. 5th Int. Conf. on Rare Gas Geochemistry, 305-314.
  • Dorr H., Münnich K.O. 1990. 222Rn flux and soil air concentration profiles in West-Germany. Soil 222Rn as tracers for gas transport in the unsaturated soil zone. Tellus, 42: 20-28.
  • Dueńas C., Fernandez M.C., Cańete S., Pérez M. 2010. Radiological impacts of natural radioactivity from phosphogypsum piles in Huelva (Spain). Radiat. Meas., 45: 242-246.
  • Dueńas C., Liger E., Cańete S., Pérez M., BolÍvar J.P. 2007. Exhalation of 222Rn from phosphogypsum piles located at the Southwest of Spain. J. Environ. Radioactiv., 95: 63-74.
  • EPA, 1999. Federal Register. Part VII. 40 CFR. Part 61. Natural emission standards for hazardous air pollutants. Subpart R Rule: National emission standards for radon emission from phosphogypsum stacks. Section 61204. Distribution and use of phosphogypsum for agricultural purposes (64FR 5574, February 3, 1999), U.S. Environmental Protection Agency, Washington, DC 20460, 64(22): 5574-5580.
  • Fourati A., Faludi G. 1988. Changes in radioactivity of phosphate rocks during the process of production. J. Radioanal. Nucl. Ch., 125: 287-293.
  • Goh T.B., Oscarson D.W., Cheslock M., Shaykewich C. 1991. Fluence rate of radon from soil: effect of sorption barriers, moisture content, and temperature. Health Phys., 61 (3): 359-365.
  • Hull C.D., Burnett W.C. 1996. Radiochemistry of Florida phosphogypsum. J. Environ. Radioactiv., 32: 213-237.
  • Israelson S., Knudsen E., Ungethüm E., Dahlgren L. 1972. On the natural alpha-activity near the ground. Tellus, 24: 368-379.
  • Jagielak J., Biernacka M., Henschke J., Sosińska A. 1998. Radiation atlas of Poland. Central Laboratory for Radiological Protection. Warsaw. (in Polish)
  • Kobal I., Brajnik D., Kaluza F., Vengust M. 1990. Radionuclides in effluents from coal mines, a coal-fired power plant and a processing plant in Zasanje, Slovenia (Yugoslawia). Health Phys., 58: 81-85.
  • Laiche T.P., Scott M.L. 1991. A radiological evaluation of phosphogypsum. Health Phys. 60: 691-693.
  • Luther S.M., Dudas M.J., Rutherford P.M. 1993. Radioactivity and chemical characteristic of Alberta phosphogypsum. Water Air Soil Poll., 69: 277-290.
  • Lysandrou M., Charalambides A., Pashalidis I. 2007. Radon emanation from phosphogypsum and related minerals in Cyprus. Radiat. Meas., 42: 1583-1585.
  • Maduar M.F., Campos M.P., Mazzilli B.P., Villaverde F.L. 2011 Assessment of external gamma exposure and radon levels in a dwelling constructed with phosphogypsum plates. J. Hazard. Mater., 190: 1063-1067
  • Morris R.C., Fraley L. 1989. Effects of vegetation, a clay cap and environmental variables on 222Rn fluency rate from reclaimed U mill tailings. Health Phys., 56: 431-440.
  • Papastefanou C., Stoulos S., Ioannidou A., Manolopoulou M. 2006. The application of phosphogypsum in agriculture and radiological impact. J. Environ. Radioactiv., 89: 188-198.
  • Pohl-Rüling J., Hofmann W. 2002. Investigation of cancer mortality in the Gastein Valley, an area of high-level natural radiation. Int. Congr. Ser., 1236: 27-29.
  • Prasad Y., Prasad G., Gusain G.S., Choubey V.M., Ramola R.C. 2008. Radon exhalation rate from soil samples of South Kumaun Lesser Himalays, India. Radiat. Meas., 43: 369-374.
  • Rabi J.A., ds Silva N.C. 2006. Radon exhalation from phosphogypsum building boards: symmetry constraints impermeable boundary conditions and numerical simulation of a test case. J. Environ. Radioactiv., 86: 164-175.
  • Rabi J.A., Mohamad A.A. 2006. Parametric modeling and numerical simulation of natural-convective transport of radon-222 from a phosphogypsum stack into open air. Appl. Math. Model., 30: 1546-1560.
  • Reijnders L. 2007. Cleaner phosphogypsum, coal combustion ashes and waste incineration ashes for application in building materials: A review. Build. Environ., 42: 1036-1042.
  • Rutherford P.M., Dudas M.J., Samek R.A. 1994. Environmental impacts of phosphogypsum. Sci. Total Environ., 149: 1-38.
  • Tayibi H., Choura M., López A.F., Alguacil F.J., López-Delgado A. 2009. Environmental impact and management of phosphogypsum. J. Environ. Manage., 40: 2377-2386.
  • Shweikani R., Giaddui T.G., Durrani S.A. 1995. The effect of soil parameters on the radon concentration values in the environment. Radiat. Meas., 25: 581-584.
  • Skorovarov J.I., Ruzin L.I., Lomonosov A.V., Tselitschev G.K. 1998. Solvent extraction cleaning phosphoric acid in fertilizer production. J. Radioanal. Nucl. Ch., 229: 111-116.
  • Srivistava D.S., Singh P., Rana N.P.S., Naqvi A.H., Azam A., Ramachandran T.V., Subba RAMU M.C. 1995. Calibration factor for LR-115 Type II track detectors for environmental radon measurements. Nucl. Geophys., 9: 487-495.
  • Sundal A.V., Valen V., Soldal O., Strand T. 2008. The influence of meteorological parameters on soil radon levels in permeable glacial sediments. Sci. Total Environ., 389: 418-428.
  • Tchorz-Trzeciakiewicz D.E., Solecki A.T. 2011. Seasonal variation of radon concentrations in atmospheric air in the Nowa Ruda area (the Sudety Mountains) of southwest Poland. Geochem. J., 45: 491-496.
  • Yamazawa H., Miyazaki T., Moriizumi J., Iida T., Takeda S., Nagara S., Sato K., Tokiyawa, T. 2005. Radon exhalation from a ground surface during cold snow season. Int. Cong. Ser., 1276: 221-222.

Uwagi

PL
Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-c6ebf350-bb29-4a6b-bd4b-d93cfd67dd1e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.