PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 36 | 12 |

Tytuł artykułu

Enhancement of Festuca rubra L. germination and seedling growth by seed treatment with pathogenic Agrobacterium rhizogenes

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The study concerned effects of two methods of red fescue seeds treating with wild type Agrobacterium rhizogenes strains (15834 and LBA 1334): soaking and matriconditioning with Micro-Cel E solid carrier. The effects were assessed from germination and seedlings growth rates. The bacterial indole-3-acetic acid (IAA) production and ACC deaminase activity were also determined. Both strains are able to produce the IAA and showed ACC deaminase activity in various amounts. The strains accelerated seeds germination, seedling emergence and development. The beneficial effect on those processes was visible when seeds were soaked for 1 h in bacterial suspension and, especially, when the bacteria were present during Micro-Cel E conditioning. The main effect observed upon inoculation of seeds during priming was increased growth of lateral roots and more complex architecture of the branching root system. Treating seeds with A. rhizogenes simultaneously with Micro-Cel E priming as a carrier is a promising method of enhancing grass germination and seedlings growth, particularly by improving the root system development.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

36

Numer

12

Opis fizyczny

p.3263-3274,fig.,ref.

Twórcy

autor
  • Chair of Plant Biotechnology, Faculty of Biology, University of Szczecin, Waska 13, 71-415, Szczecin, Poland
autor
  • Chair of Plant Biotechnology, Faculty of Biology, University of Szczecin, Waska 13, 71-415, Szczecin, Poland
  • Chair of Plant Biotechnology, Faculty of Biology, University of Szczecin, Waska 13, 71-415, Szczecin, Poland

Bibliografia

  • Bashan Y (1998) Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnol Adv 16(4):729–770
  • Bennett AJ, Whipps JM (2008) Dual application of beneficial microorganisms to seed during drum priming. Appl Soil Ecol 38:83–89
  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350
  • Bradford M (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254
  • Chilton MD, Tepfer DA, Petit A, David C, Casse-Delbert F, Tempe J (1982) Agrobacterium rhizogenes inserts T-DNA into the genome of the host plant root cells. Nature 295:432–434
  • Damiano C, Monticelli S (1998) In vitro fruit trees rooting by Agrobacterium rhizogenes wild type infection. Electron J Biotechn 1:1–7
  • Duan J, Müller KM, Charles TC, Vesley S, Glick BR (2009) 1-aminocyclopropane-1-carboxylate (ACC) deaminase genes in rhizobia from southern Saskatchewan. Microb Ecol 57:421–422
  • Estrada-Navarrete G, Alvarado-Affantranger X, Oliveras JE, Diaz-Camino C, Santana O, Murillo E, Guillen G, Sanchez-Guevara N, Acosta J, Quinto C, Li D, Gresshoff PM, Sanchez F (2006) Agrobacterium rhizogenes transformation of the Phaseolus spp.: a tool for functional genomics. Mol Plant Microbe In 19:1385–1393
  • Gholami A, Shahsavani S, Nezarat S (2009) The effect of plant growth promoting rhizobacteria (PGPR) on germination, seedling growth and yield of maize. Proc World Acad Sci Eng Tech 49:19–24
  • Glick BR (1995) The enhancement of plant growth by free living bacteria. Can J Microbiol 41:109–111
  • Glick BR (2012) Plant growth–promoting bacteria: mechanism and applications. Hindawi Publishing Corporation. Scientifica ID 963401. doi:10.6064/2012/963401
  • Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190:63–68
  • Glick BR, Todorovic B, Czarny J, Cheng Z, Duan J, McConkey B (2007) Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 26:227–242
  • Grant JE, Dommisse EM, Conner AJ (1991) Gene transfer to plant using Agrobacterium. In: Murray DR (ed) Advanced methods in plant breading and international biotechnology. CAB International, Wallingford, pp 50–73
  • Haggman HM, Aronen TS (2000) Agrobaterium rhizogenes for rooting recalcitrant woody plants. In: Jain SM, Minocha SC (eds) Molecular biology of woody plants, V 2. Kluwer Academic Publishers, New York, pp 47–78
  • Hao Y, Charles TC, Glick BR (2007) ACC deaminase from plant growth-promoting bacteria affects crown gall development. Can J Microbiol 53:1291–1299
  • Hao Y, Chareles TC, Glick BR (2011) ACC deaminase activity in avirulent Agrobacterium tumefaciens D3. Can J Microbiol 57:278–286
  • Hardegree SP (1994) Matric priming increase germination rate of great basin native perennial grasses. Agron J 86:289–293
  • Honma M, Shimomura T (1978) Metabolism of 1-aminocyclopropane-1-carboxylic acid. Agric Biol Chem 42:1825–1831
  • Kaymak HC, Yarali F, Guvenc I, Donmez MF (2008) The effect of inoculation with plant growth rhizobacteria (PGPR) on root formation of mint (Mentha piperita L.) cuttings. Afr J Biotechnol 7(24):4479–4483
  • Kępczyńska E, Piękna-Grochala J, Kępczyński J (2003a) Effects of matriconditioning on onion seed germination, seedling emergence and associated physical and metabolic events. Plant Growth Regul 41:269–278
  • Kępczyńska E, Zielińska S, Kępczyński J (2003b) Ethylene production by Agrobacterium rhizogenes strains in vitro and in vivo. Plant Growth Regul 39:13–17
  • Kępczyńska E, Piękna-Grochala J, Kępczyński J (2007) Seed germination of two tomato cultivars following matriconditioning under optimal and stress temperatures. Seed Sci Technol 35(3):749–753
  • Khalid A, Arshad M, Zahir ZA (2004) Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat. J App Microbiol 96:473–480
  • Khan AA (1992) Preplant physiological seed conditioning. In: Janick J (ed) Horticultural reviews. John Wiley & Sons, New York, pp 131–181
  • Khan AA, Miura H, Prusiński J, Ilyas S (1990) Matriconditioning of seeds to improve emergence. In: Proceedings of National Symposium Stand Establishment Horticultural Crops, Minneapolis pp 19–40
  • Li J, Glick BR (2001) Transcriptional regulation of the Enterobacter cloacae UW 1-aminocyclopropane-1-carboxylate (ACC) deaminase gene (acdS). Can J Microbiol 47:359–367
  • Lucy M, Reed E, Glick BR (2004) Application of free living plant growth-promoting rhizobacteria. Anton Leeuw Int J G 86:1–25
  • Madakadze IC, Prithviray B, Madakadze RM, Steward K, Peterson P, Coulman BE, Smith DL (2000) Effect of preplant seed conditioning treatment on the germination of switch grass (Panicum virgatum L.). Seed Sci Technol 28(2):403–411
  • Mahmood M, Rahman ZA, Saud HM, Shamsuddin ZH, Subramaniam S (2010) Influence of rhizobacterial and agrobacterial inoculation on selected physiological and biochemical changes of banana cultivar, berangan (AAA) plantlets. J Agr Sci 2(1):115–137
  • Martinez-Viveros O, Jorquera MA, Crowley DE, Gajardo G, Mora ML (2010) Mechanism and practical considerations involved in plant growth promotion by rhizobacteria. J Soil Sci Plant Nutr 10:293–319
  • McAfee BJ, White EE, Pelcher LE, Lapp MS (1993) Root induction in pine (Pinus) and larch (Larix) spp. using Agrobacterium rhizogenes. Plant Cell Tiss Org 34:53–62
  • Miller JH (1976) Experiments in molecular genetics. Cold Spring Harbor Laboratory, New York
  • Patten ChL, Glick BR (2002) Role of Pseudomonas putida indole acetic acid in development of the host plant root system. Appl Environ Microb 68:3795–3801
  • Peck SC, Kende H (1995) Sequentional induction of the ethylene biosynthesis enzyme by indole-3-acetic acid in etiolated peas. Plant Mol Biol 28:293–301
  • Penrose DM, Glick BR (2003) Methods for isolating and characterizing ACC deaminase containing plant growth-promoting rhizobacteria. Physiol Plantarum 118:10–15
  • Rashid S, Charles TC, Glick BR (2011) Isolation and characterization of new plant growth-promoting bacterial endophytes. Appl Soil Ecol 61:217–224
  • Sarmast MK, Salehi H, Khosh-Khui M (2012) Micropropagation of Araucaria excelsa R. Br. var. glauca Carrière from orthotropic stem explants. Physiol Mol Biol Plants 18(3):265–271
  • Sarwar M, Arshad M, Martens DA, Frankenberger WT Jr (1992) Tryptophan-dependent biosynthesis of auxins in soil. Plant Soil 147:207–215
  • Shokri D, Emtiazi G (2010) Indole-3-acetic acid (IAA) production in symbiotic and non-symbiotic nitrogen-fixing bacteria and its optimization by Taguchi design. Curr Microbiol 61:217–225
  • Spaepen S, Vanderleyden J (2010) Auxin and plant-microbe interactions. Cold Spring Harb Perspect Biol. doi:10.1101/cshperspect. a001438
  • Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism plant signalling. FEMS Microbiol Rev 31:425–448
  • Tepfer D (1990) Genetic transformation using Agrobacterium rhizogenes. Physiol Plantarum 79:140–146
  • Tsavkelova EA, Cherdyntseva TA, Netrusov AL (2005) Auxin production by bacteria associated with orchid roots. Mikrobiologiia 74(1):55–62
  • Verma JP, Yadav J, Tiwari KN, Sing L, Singh V (2010) Impact of plant growth promoting rhizobacteria on crop production. Int J Agric Res 5:954–983
  • Wachter R, Fisher K, Gabler R, Kuhnemann F, Urban W, Bogemann GM (1999) Ethylene production and ACC accumulation in Agrobacterium tumefaciens- induced plant tumors and their impact on tumours and host stem structure and function. Plant Cell Environ 22(10):1263–1273
  • Whipps JM (2001) Microbial interaction and biocontrol in the rhizosphere. J Exp Bot 52:487–511
  • Yamamoto I, Turgeon AJ, Duich JM (1997) Seedling emergence and growth of solid matrix primed Kentucky bluegrass seed. Crop Sci 37:225–229

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-c6410b9c-c3de-43c5-a3b2-5fb63f159b89
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.