PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 68 | 3 |

Tytuł artykułu

Microwave irradiation enhances the germination rate of tartary buckwheat and content of some compounds in its sprouts

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Tartary buckwheat (Fagopyrum tataricum) seeds were irradiated with microwaves at various power levels of 200, 400, 600 and 800 W for 10 or 30 s. The irradiated grains were germinated for 3, 5, and 7 days and harvested. The germination rate of the tartary buckwheat seeds and contents of some compounds in the sprouts were investigated. The results showed that the exposure to 600 W microwaves for 10 s resulted in the highest fi nal germination rate after 7 days of germination, which was 2 times that of the control. The exposure of seeds to 800 W for 30 s showed the lowest germination rate (approximately 10%), which decreased by 87% compared with the control (p<0.05). The exposure at 600 W for 30 s stimulated the total flavones content, reduced the sugar and soluble protein contents, and increased the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity. The highest free amino acid content (11 mg/g) was observed in 5-day sprouts exposed to 800 W for 10 s. Moreover, the microwave treatment had a positive effect on the catalase (CAT) and superoxide dismutase (SOD) activity.

Wydawca

-

Rocznik

Tom

68

Numer

3

Opis fizyczny

p.195-205,fig.,ref.

Twórcy

autor
  • Biological and Chemical Engineering Institute, Anhui Polytechnic University, Wuhu 241000, China
autor
  • Biological and Chemical Engineering Institute, Anhui Polytechnic University, Wuhu 241000, China
autor
  • Biological and Chemical Engineering Institute, Anhui Polytechnic University, Wuhu 241000, China

Bibliografia

  • 1. Aladjadjiyan A., Effect of microwave irradiation on seeds of lentils (Lens culinaris, Med.). Rom. J. Biophys., 2010, 20, 3, 213–221.
  • 2. Aladjadjiyan A., Physical factors for plant growth stimulation improve food quality. 2012, 145–168. In Tech, Plovdiv, Bulgaria.
  • 3. AOAC, Offi cial Methods of Analysis (16th edn.). Methods 939.03. Arlington, VA: Association of Offi cial Analytical Chemists International, 1995.
  • 4. Aragão V.P.M., Navarro B.V., Passamani L.Z., Macedo A.F., Floh E.I.S., Silveira V., Santa-Catarina C., Free amino acids, polyamines, soluble sugars and proteins during seed germination and early seedling growth of Cedrela fissilis Vellozo (Meliaceae), an endangered hardwood species from the Atlantic Forest in Brazil. Theor. Exp. Plant. Phys., 2015, 27, 157–169.
  • 5. Asghar T., Jamil Y., Iqbal M., Ziaul H., Abbas M., Laser light and magnetic field stimulation effect on biochemical, enzymes activities and chlorophyll contents in soybean seeds and seedlings during early growth stages. J. Photochem. Photobiol. B., 2016, 165, 283–290.
  • 6. Carbonell M.V., Martinez E., Amaya J.M., Stimulation of germination in rice (Oryza satival.) by astatic magnetic field. Electro. Magnetobiol. Med., 2000, 19, 121–128.
  • 7. Chen Y.P., Jia J.F., Han X.L., Weak microwave can alleviate water deficit induced by osmotic stress in wheat seedlings. Planta, 2009a, 229, 291–298.
  • 8. Chen Y.P., Jia J.F., Wang Y.J., Weak microwave can enhance tolerance of wheat seedlings to salt stress. J. Plant. Growth. Reg., 2009b, 28, 381–385.
  • 9. Chen Y.P., Liu Y.J., Wang X.L., Ren Z.Y., Yue M., Effect of microwave and He-Ne laser on enzyme activity and biophoton emission of Isatis indigotica fort. J. Integr. Plant. Biol., 2005, 47, 849–855.
  • 10. Damm M., Nusshold C., Cantillo D., Rechberger G.N., Gruber K., Sattler W., Kappe C.O., Can electromagnetic fields Influence the structure and enzymatic digest of proteins? A critical evaluation of microwave-assisted proteomics protocols. J. Protemics, 2012, 75, 5533–5543.
  • 11. Dhawi F., Al Khayri J.M., Magnetic field induced biochemical and growth changes in date palm seedlings. Date Palm Biotechnol., 2011, 287–309.
  • 12. Doblado R., Frias J., Vidal-Valverde C., Changes in vitamin C content and antioxidant capacity of raw and germinated cowpea (Vigna sinensis var. carilla) seeds induced by high pressure treatment. Food. Chem., 2007, 101, 918–923
  • 13. Fabjan N., Rode J., Kosir I.J., Wang Z., Zhang Z., Kreft I., Tartary buckwheat (Fagopyrum tataricum Gaertn.) as a source of dietary rutin and quercitrin. J. Agr. Food Chem., 2003, 51, 6452–6455.
  • 14. Fikret Y., Manar T., Sebnem E., Sebnem K., Ozlem U., SOD, CAT, GR and APX enzyme activities in callus tissues of susceptible and tolerant eggplant varieties under salt stress. Res. J. Biotechnol., 2013, 8, 45–50.
  • 15. Gaurilcikiene I., Ramanauskiene J., Dagys M., Simniskis R., Dabkevicius Z., Suproniene S., The effect of strong microwave electric field radiation on: (2) wheat (Triticum aestivum L.) seed germination and sanitation. Zemdirbyste, 2013, 100, 185–190.
  • 16. Guo Y.X., Zhu Y.H., Chen C.X., Chen X.M., Effects of aeration treatment on gamma-aminobutyric acid accumulation in germinated tartary buckwheat (Fagopyrum tataricum). J. Chem., 2016, 2016, 1–9, art no. 4576758.
  • 17. Hamada E.A.M., Effects of microwave treatment on growth, photosynthetic pigments and some metabolites of wheat. Biol. Plantarum, 2007, 51, 343–345.
  • 18. Han F., The effect of microwave treatment on germination, vigour and health of China aster (Callistephus chinensis Nees.) seeds. J. Agr. Sci., 2010, 2, 4, 201–210.
  • 19. Hithamani G., Srinivasan K., Bioaccessibility of polyphenols from wheat (Triticum aestivum), sorghum (Sorghum bicolor), green gram (Vigna radiata), and chickpea (Cicer arietinum) as Influenced by domestic food processing. J. Agr. Food Chem., 2014, 62, 11170–11179.
  • 20. JiH.B., Tang W., Zhou X.L., Wu Y., Combined effects of blue and ultraviolet lights on the accumulation of flavonoids in tartary buckwheat sprouts. Pol. J. Food. Nutr. Sci., 2016, 66, 93–98.
  • 21. Kadlec P., Rubecova A., Hinkova A., Kaasova J., Bubnik Z., Pour V., Processing of yellow pea by germination, microwave treatment and drying. Innov. Food. Sci. Emer., 2001, 2, 133–137.
  • 22. Kwon Y., Lee K., Yun T., Choi S., Effect of heat pretreatment on the functional constituents of rice germ. Prev. Nutr. Food Sci., 2004, 9, 330–335.
  • 23. Lee L.S., Choi E.J., Kim C.H., Sung J.M., Kim Y.B., Seo D.H., Choi H.W., Choi Y.S., Kum J.S., Park J.D., Contribution of flavonoids to the antioxidant properties of common and tartary buckwheat. J. Cereal Sci., 2016, 68, 181–186.
  • 24. Li B.C., Li Y.Q., Hu Q.B., Antioxidant activity of flavonoids from tartary buckwheat bran. Toxicol. Environ. Chem., 2016, 98, SI, 429–438.
  • 25. Li S.J., Bai Y.C., Li C.L., Yao H.P., Chen H., Zhao H.X., Wu Q., Anthocyanins accumulate in tartary buckwheat (Fagopyrum tataricum) sprout in response to cold stress. Acta. Physiol. Plant, 2015, 37, 1–8, art no. 159.
  • 26. Li X.H., Park N.J., Park Ch.H., Kim S.G., Lee S.Y., Park S.U., Influence of sucrose on rutin content and flavonoid biosynthetic genes expression in seedlings of common buckwheat (Fagopyrum esculentum Moench). Plant Omics, 2011, 4, 215–219.
  • 27. Łupinska A., Kozioł A., Araszkiewicz M., Łupinski M., The changes of quality in rapeseeds during microwave drying. Drying Technol., 2009, 27, 857–862.
  • 28. Nam T.G., Lee S.M., Park J.H., Kim D.O., Baek N.I., Eom S.H., Flavonoid analysis of buckwheat sprouts. Food. Chem., 2015, 170, 97–101.
  • 29. Onac I., Singureanu V., Moldovan G., Ungur R., High frequency pulsatile electromagnetic fields and ultrasound pulsatile fields impact on germination dynamic at Ocimum basilicum L. and O. basilicum var. purpurascens benth., observed with open source software. Not Bot. Horti. Agrob., 2016, 44, 41–47.
  • 30. Orsak M., Lachman J., Vejdova M., Pivec V., Hamouz K., Changes of selected secondary metabolites in potatoes and buckwheat caused by UV, gamma- and microwave irradiation. Rost. Vyroba., 2001, 47, 493–500.
  • 31. Pasko P., Barton H., Zagrodzki P., Gorinstein S., Folta M., Zachwieja Z., Anthocyanins, total polyphenols and antioxidant activity in amaranth and quinoa seeds and sprouts during their growth. Food. Chem., 2009, 115, 994–998.
  • 32. Pelletier M.K., Burbulis I.E., Winkelshirley B., Disruption of specific flavonoid genes enhances the accumulation of flavonoid enzymes and end-products in arabidopsis seedlings. Plant Mol. Biol., 1999, 40, 45–54.
  • 33. Radzevičius A., Sakalauskienė S., Dagys M., Simniškis R., Karklelienė R., Bobinas Č., Duchovskis P., The effect of strong microwave electric field radiation on: (1) vegetable seed germination and seedling growth rate. Zemdirbyste, 2013, 100, 179–184.
  • 34. Ragha L., Mishra S., Ramachandran V., Bhatia M.S., Effects of low-power microwave fields on seed germination and growth rate. JEMAA, 2011, 3, 5, 165–171.
  • 35. Rajjou L., Duval M., Gallardo K., Catusse J., Bally J., Job C., Job D., Seed germination and vigor. Annu. Rev. Plant Biol., 2012, 63, 507–533.
  • 36. Randhir R., Shetty K., Microwave-induced stimulation of L-DOPA, phenolics and antioxidant activity in fava bean (Vicia faba) for Parkinson’s diet. Process Biochem., 2004, 39, 1775–1784.
  • 37. R oux D., Vian A., Girard S., Bonnet P., Paladian F., Davies E., Ledoigt G., Electromagnetic fields (900 MHz) evoke consistent molecular responses in tomato plants. Physiologia Plantarum, 2006, 128, 283–288.
  • 38. Seo D.H., Kim M.S., Choi H.W., Sung J.M., Park J.D., Kum J.S., Effects of millimeter wave treatment on the germination rate and antioxidant potentials and gamma-aminobutyric acid of the germinated brown rice. Food. Sci. Biotechnol., 2016, 25, 111–114.
  • 39. Seo J.M., Arasu M.V., Kim Y.B., Park S.U., Kim S.J., Phenylalanine and LED lights enhance phenolic compound production in tartary buckwheat sprouts. Food. Chem., 2015, 177, 204–213.
  • 40. Stan M., Soran M.L., Varodi C., Lung I., Influence of microwave field on the ascorbic acid content in leaves of some common aromatic plants in Romania. Stud. U. Babes-Bol. Chem., 2014, 59, 125–133.
  • 41. Thwe A.A., Kim Y., Li X., Kim Y.B., Park N.I., Kim H.H., Kim S.J., Park S.U., Accumulation of phenylpropanoids and correlated gene expression in hairy roots of tartary buckwheat under light and dark conditions. Appl. Biochem. Biotechnol., 2014, 174, 2537–2547.
  • 42. Uppal V., Bains K., Effect of germination periods and hydrothermal treatments on in vitro protein and starch digestibility of germinated legumes. J. Food. Sci. Tech. Mysore, 2012, 49, 184–191.
  • 43. Wang Z., Cao W., Dai T., Changes of endogenous plant hormones and soluble sugars and proteins during deficit development and degeneration in wheat. Acta Agronomica Sinica, 2001, 27, 447–452 (in Chinese; English abstract).
  • 44. Yu M., Liu H.Z., Shi A.M., Liu L., Wang Q., Preparation of resveratrol-enriched and poor allergic protein peanut sprout from ultrasound treated peanut seeds. Ultrason. Sonochem., 2016, 28, 334–340.
  • 45. Zhang G., Xu Z., Gao Y., Huang X., Zou Y., Yang T., Effects of germination on the nutritional properties, phenolic profi les, and antioxidant activities of buckwheat. J. Food. Sci., 2015, 80, H1111–1119.
  • 46. Zhou X.L., Hao T.F., Zhou Y.M., Tang W., Xiao Y., Meng X., Fang X., Relationships between antioxidant compounds and antioxidant activities of tartary buckwheat during germination. J. Food. Sci. Tech. Mysore, 2015a, 52, 2458–2463.
  • 47. Zhou Y.M., Wang H., Cui L.L., Zhou X.L., Tang W., Song X.L., Evolution of nutrient ingredients in tartary buckwheat seeds during germination. Food. Chem., 2015b, 186, 244–248.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-c59daa95-9700-462b-a342-f4851287ef38
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.