Department of Mechanical Engineering and Automatics, University of Life Sciences in Lublin, Doswiadczalna 50A, 20-280 Lublin, Poland
Bibliografia
1. Bjorck A., 1996: Numerical Methods for Least Squares Problems. SIAM, Philadelphia, PA.
2. Bzowska-Bakalarz M., 1989: Comparison of rheological models determining the physical properties of sugar beet roots. Proceedings of the 4th International Conference Physical Properties of Agricultural Materials, Rostock, 109-112.
3. Czachor G., 2010: Models of stress relaxation in fibre-boards containing straw component. Inżynieria Rolnicza, 1(119), 105-113 [in Polish].
4. Elster C., Honerkamp J., Weese J., 1991: Using regularization methods for the determination of relaxation and retardation spectra of polymeric liquids. Rheological Acta 30(2), 161-174.
5. Ferry J.D., 1980: Viscoelastic properties of polymers. John Wiley and Sons, New York.
6. Figiel A., 2008: Rheological properties of biodegradable material determined on the basis of a cyclic stress relaxation test. Inżynieria Rolnicza, 4 (102), 271-278 [in Polish].
7. Gladyszewska B., Ciupak A., 2011: A storage time influence on mechanical parameters of tomato fruit skin. TEKA Commission of Motorization and Power Industry in Agriculture, 11C, 64-73.
8. Golacki K., Kołodziej P., 2011: Impact testing of biological material on the example of apple tissue. TEKA Commission of Motorization and Power Industry in Agriculture, 11c, 74-82.
9. Gołacki K., Kołodziej P., Stankiewicz A., Stropek Z., 2003: Report of KBN Grant No 5P06F00619: “Mechanical hardiness of sugar beet analysis in the context of practical mechanical loads”, 1-214 [in Polish].
10. Guz T., 2008: Thermal quarantine of apples as a factor forming its mechanical properties. TEKA Commission of Motorization and Power Industry in Agriculture, 8 A, 52-62.
12. Kubacki K.S., 2006: Should we always use the mean value. TEKA Commission of Motorization and Power Industry in Agriculture, 6, 55-66.
13. Kuna-Broniowska I., Bożena Gładyszewska B., Anna Ciupak A., 2011: A comparison of mechanical parameters of tomato’s skin of greenhouse and soil-grown varieties. TEKA Commission of Motorization and Power Industry in Agriculture, 11C, 151-161.
14. Kusińska E., Kornacki A., 2008: Testing of a mathematical model of grain porosity. TEKA Commission of Motorization and Power Industry in Agriculture, 8A, 112-117.
15. Lebedev N.N., 1972: Special functions and their applications. Dover, New York.
16. Ljung L., 1999: System Identification: Theory for the User. Prentice-Hall, Englewood Cliffs New Jersey.
17. Nowak K., Białobrzewski I., 2009: Modelling rheological properties of livestock meat in Matlab environment. Inżynieria Rolnicza, 9(118), 177-180 [in Polish].
18. Rao M.A., 1999: Rheology of Fluid and Semisolid Foods. Principles and Applications. Aspen Publishers, Inc., Gaithersburg, Maryland.
19. Sorvari J., Malinen M., 2006: Determination of the relaxation modulus of a linearly viscoelastic material. Mechanics of Time-Dependent Materials, 10, 125-133.
20. Stankiewicz A., 2003: A scheme for identification of continuous relaxation time spectrum of biological viscoelastic materials. Acta Scientiarum Polonorum, Seria Technica Agraria 2(2), 77-91 [in Polish].
21. Stankiewicz A., 2007: Identification of the relaxation spectrum of viscoelastic plant materials. Ph. D. Thesis, Agricultural University of Lublin, Poland [in Polish].
22. Stankiewicz A., 2012: On determination of the relaxation spectrum of viscoelastic materials from discretetime stress relaxation data. TEKA Commission of Motorization and Power Industry in Agriculture (submitted for publication).
23. Syed Mustapha S.M.F.D., Phillips T.N., 2000: A dynamic nonlinear regression method for the determination of the discrete relaxation spectrum. Journal of Physics D: Applied Physics, 33(10), 1219-1229.
24. Tikhonov A.N., Arsenin V.Y., 1977: Solutions of Illposed Problems. John Wiley and Sons New York, USA.