PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 20 | 2 |

Tytuł artykułu

The behaviour and vocalisations of captive Geoffroy's horseshoe bats, Rhinolophus clivosus (Chiroptera: Rhinolophidae)

Języki publikacji

EN

Abstrakty

EN
Acoustic signals are important to the biology of animals, mediating crucial activities such as social interactions (communication) as well as orientation and foraging (echolocation). Many signals used in communication are vocal, which are especially important in nocturnal animals such as bats where social interactions occur in darkness. Despite this, little is known about the social calls and behaviours of echolocating bats. To better understand their social and acoustic behaviour, we compiled an ethogram and list of vocalisations for Geoffroy's horseshoe bat (Rhinolophus clivosus). We kept three non-contemporaneous and short-term captive groups to capture interactions and social calls using simultaneous video and audio recordings. The resultant ethogram was comprised of 40 unique types of behaviour, both social and non-social. Social calls (n = 255) were assigned to different call types by their frequency-time contour and categorised by their behaviours, situational categories and functional contexts (affiliative or agonistic). From the calls observed, four acoustically distinct call types were identified: (i) cascading/rising frequency-modulated (FM) calls (n = 26), (ii) oscillatory FM calls (n = 140), (iii) noisy screech calls (n = 68), and (iv) whistle calls (n = 21) (GLM: F30, 711 = 24.28, P < 0.001). Call types showed only weak associations with certain behaviours, situational categories or functional contexts. However, calls with specific acoustic attributes accompanied the behaviour of wing swat [discriminant function analysis (DFA) classification success: 76%; GLM: F20, 108 = 4.12, P < 0.001] and situational category of flight (DFA classification success: 82%; GLM: F20, 136 = 2.97, P < 0.001). An analysis of acoustic attributes across all call types showed weak associations with functional context (Affiliative DFA classification success: 6%). Only one acoustic parameter (peak frequency) had a slight significant difference between calls emitted during agonistic and affiliative interactions (GLM: F10, 73 = 2.30, P < 0.05; post-hoc unequal n: P = 0.044). In addition to the description of distinct call types, we provide evidence of transitional calls in this bat species in which a social call transitions seamlessly into an echolocation pulse. This study gives a first glimpse into the behaviours and social vocalisations produced by R. clivosus. Basic behavioural data such as these may facilitate the design of experiments that allow greater insight into the social organisation of bats.

Wydawca

-

Rocznik

Tom

20

Numer

2

Opis fizyczny

p.439-453,fig.,ref.

Twórcy

autor
  • Animal Evolution and Systematics Group, Department of Biological Sciences, University of Cape Town, Rondebosch, Cape Town, 7700, South Africa
autor
  • Animal Evolution and Systematics Group, Department of Biological Sciences, University of Cape Town, Rondebosch, Cape Town, 7700, South Africa
autor
  • School of Life Sciences, University of KwaZulu-Natal, Durban 4001, KwaZulu-Natal, South Africa
autor
  • Animal Evolution and Systematics Group, Department of Biological Sciences, University of Cape Town, Rondebosch, Cape Town, 7700, South Africa

Bibliografia

  • 1. Acevedo-Gutiérrez, A., and S. C. Stienessen. 2004. Bottlenose dolphins (Tursiops truncatus) increase number of whistles when feeding. Aquatic Mammals, 30: 357–362. Google Scholar
  • 2. Altmann, J., J. Loy, and S. Wagner. 1974. Observational study of behavior: sampling methods. Records of the Allee Laboratory of Animal Behavior, University of Chicago, 3: 227–265. Google Scholar
  • 3. Andrews, M. M., and P. T. Andrews. 2003. Ultrasound social calls made by greater horseshoe bats (Rhinolophus ferrumequinum) in a nursery roost. Acta Chiropterologica, 5: 221–234. Google Scholar
  • 4. Andrews, M. M., P. T. Andrews. 2016. Greater horseshoe bat (Rhinolophus ferrumequinum) ultrasound calls outside a nursery roost indicate social interaction not light sampling. Mammal Communications, 2: 1–8. Google Scholar
  • 5. Andrews, M. M., P. T. Andrews, D. F. Wills, and S. M. Bevis. 2006. Ultrasound social calls of greater horseshoe bats (Rhinolophus ferrumequinum) in a hibernaculum. Acta Chiropterologica, 8: 197–212. Google Scholar
  • 6. Andrews, M. M., T. P. Mcowat, P. T. Andrews, and R. J. Haycock. 2011. The development of the ultrasound social calls of adult Rhinolophus ferrumequinum from infant bat ultrasound calls. Bioacoustics, 20: 297–316. Google Scholar
  • 7. Andrews, M. M., A. M. Hodnett, and P. T. Andrews. 2017. Social activity of lesser horseshoe bats (Rhinolophus hipposideros) at nursery roosts and a hibernaculum in North Wales, U.K. Acta Chiropterologica, 19: 161–174. Google Scholar
  • 8. Anthony, E. L. P. 1988. Age determination in bats. Pp. 47–58, in Ecological and behavioural methods for the study of bats ( T. H. Kunz, Ed.). Smithsonian Institution Press, Washington, D .C., 533 pp. Google Scholar
  • 9. Arnold, B. D., and G. S. Wilkinson. 2011. Individual specific contact calls of pallid bats (Antrozous pallidus) attract conspecifics at roosting sites. Behavioral Ecology and Sociobiology, 65: 1581–1593. Google Scholar
  • 10. Balcombe, J. P. 1990. Vocal recognition of pups by mother Mexican free-tailed bats, Tadarida brasiliensis mexicana. Animal Behaviour, 39: 960–966. Google Scholar
  • 11. Barclay, R. M. R., M. B. Fenton, and D. W. Thomas. 1979. Social behavior of the little brown bat, Myotis lucifugus: II. Vocal communication. Behavioral Ecology and Sociobiology, 6: 137–146. Google Scholar
  • 12. Barlow, K. E., and G. Jones. 1997. Differences in songflight calls and social calls between two phonic types of the vespertilionid bat Pipistrellus pipistrellus. Journal of Zoology (London), 241: 315–324. Google Scholar
  • 13. Bastian, A., and S. Schmidt. 2008. Affect cues in vocalizations of the bat, Megaderma lyra, during agonistic interactions. The Journal of the Acoustical Society of America, 124: 598–608. Google Scholar
  • 14. Bastian, A., and D. S. Jacobs. 2015. Listening carefully: increased perceptual acuity for species discrimination in multispecies signalling assemblages. Animal Behaviour, 101: 141–154. Google Scholar
  • 15. Behr, O., and O. Von Helversen. 2004. Bat serenades: complex courtship songs of the sac-winged bat (Saccopteryx bilineata). Behavioral Ecology and Sociobiology, 56: 106–115. Google Scholar
  • 16. Bekoff, M. 1979. Behavioral acts: description, classification, ethogram analysis, and measurement. Pp. 67–80, in The analysis of social interactions: methods, issues, and illustrations ( R. B. Cairns, ed.). Lawrence Erlbaum Associates, New Jersey, NJ, 243 pp. Google Scholar
  • 17. Bernard, R. T. F. 1983. Reproduction of Rhinolophus clivosus (Microchiroptera) in Natal, South Africa. Zeitschrift fur Sau getierkunde, 48: 321–329. Google Scholar
  • 18. Bohn, K. M., B. Schmidt-French, S. T. Ma, and G. D. Pollak. 2008. Syllable acoustics, temporal patterns, and call composition vary with behavioral context in Mexican free-tailed bats. The Journal of the Acoustical Society of America, 124: 1838–1848. Google Scholar
  • 19. Bohn, K. M., B. Schmidt-French, C. Schwartz, M. Smother-Man, and G. D. Pollak. 2009. Versatility and stereotypy of free-tailed bat songs. PLoS ONE, 4: e6746. Google Scholar
  • 20. Bohn, K. M., G. C. Smarsh, and M. Smotherman. 2013. Social context evokes rapid changes in bat song syntax. Animal Behaviour, 85: 1485–1491. Google Scholar
  • 21. Catchpole, C. K., and P. J. B. Slater. 2008. Themes and variations. Pp. 203–239, in Bird song: biological themes and var i ations, 2nd edition ( C. K. Catchpole and P. J. B. Slater, eds.). Cambridge University Press, Cambridge, 348 pp. Google Scholar
  • 22. Chaverri, G., and E. H. Gillam. 2010. Cooperative signaling behavior of roost location in a leaf-roosting bat. Communicative & Integrative Biology, 3: 599–601. Google Scholar
  • 23. Clement, M. J., and J. S. Kanwal. 2012. Simple syllabic calls accompany discrete behavior patterns in captive Pteronotus parnellii: an illustration of the motivation-structure hypothesis. The Scientific World Journal, 2012: 1–15. Google Scholar
  • 24. Crockford, C., and C. Boesch. 2005. Call combinations in wild chimpanzees. Behaviour, 142: 397–421. Google Scholar
  • 25. Csorba, G., P. Ujhelyi, and N. Thomas. 2003. Horseshoe bats of the World (Chiroptera: Rhinolophidae). Alana Books, Bishops Castle, Shropshire, xxxii + 160 pp. Google Scholar
  • 26. Davidson, S. M., and G. S. Wilkinson. 2004. Function of male song in the greater white-lined bat, Saccopteryx bilineata. Animal Behaviour, 67: 883–891. Google Scholar
  • 27. Dorrie, M., S. Schmidt, M. Suba, and K. Sripathi. 2001. Contactcalls of the bat, Megaderma lyra: a comparison between an Indian and a Sri Lankan population. Zoology, 104: 5. Google Scholar
  • 28. Doupe, A. J., and P. K. Kuhl. 1999. Birdsong and human speech: common themes and mechanisms. Annual Review of Neuroscience, 22: 567–631. Google Scholar
  • 29. Esser, K., and U. Schmidt. 1989. Mother-infant communication in the lesser spear-nosed bat Phyllostomus discolor (Chiroptera, Phyllostomidae) — evidence for acoustic learn ing. Ethology, 82: 156–168. Google Scholar
  • 30. Fenzl, T., and G. Schuller. 2002. Periaqueductal gray and the region of the paralemniscal area have different functions in the control of vocalization in the neotropical bat, Phyllostomus discolor. European Journal of Neuroscience, 16: 1974–1986. Google Scholar
  • 31. Fenzl, T., and G. Schuller. 2007. Dissimilarities in the vocal control over communication and echolocation calls in bats. Behavioural Brain Research, 182: 173–179. Google Scholar
  • 32. Finger, N. M., A. Bastian, and D. S. Jacobs. 2017. To seek or speak? Dual function of an acoustic signal limits its versatility in communication. Animal Behavi our, 127: 135–152. Google Scholar
  • 33. Foley, N. M., V. D. Thong, P. Soisook, S. M. Goodman, K. N. Armstrong, D. S. Jacobs, S. J. Puechmaille, and E. C. Teeling. 2015. How and why overcome the impediments to resolution: lessons from rhinolophid and hipposiderid bats. Molecular Biology and Evolution, 32: 313–333. Google Scholar
  • 34. Gadziola, M. A., J. M. S. Grimsley, P. A. Faure, and J. J. Wen-Strup. 2012. Social vocalizations of big brown bats vary with behavioral context. PLoS ONE, 7: e44550. Google Scholar
  • 35. Goymann, W., D. Leippert, and H. Hofer. 2000. Sexual segregation, roosting, and social behaviour in a free-ranging colony of Indian false vampires (Megaderma lyra). International Journal of Mammalian Biology, 65: 138–148. Google Scholar
  • 36. Heckel, G., and O. Von Helversen. 2002. Male tactics and reproductive success in the harem polygynous bat Saccopteryx bilineata. Behavioral Ecology, 13: 750–756. Google Scholar
  • 37. Hinde, R. A. 1970. Animal behavior: a synthesis of ethology and comparative psychology, 2nd edition. McGraw-Hill, New York, NY, 876 pp. Google Scholar
  • 38. Hutt, S. J., and C. Hutt. 1970. Direct observation and measurement of behavior. C. C. Thomas, Springfield, IL, 224 pp. Google Scholar
  • 39. Jacobs, D. S., R. M. R. Barclay, and M. H. Walker. 2007. The allometry of echolocation call frequencies of insectivorous bats: why do some species deviate from the pattern? Oecologia, 152: 583–594. Google Scholar
  • 40. Janssen, S., and S. Schmidt. 2009. Evidence for a perception of prosodic cues in bat communication: contact call classification by Megaderma lyra. Journal of Comparative Physiology, 195A: 663–672. Google Scholar
  • 41. Kaiser, H. F. 1960. The application of electronic computers to factor analysis. Educational and Psychological Measurement, 20: 141–151. Google Scholar
  • 42. Kanwal, J. S., S. Matsumura, K. Ohlemiller, and N. Suga. 1994. Analysis of acoustic elements and syntax in communication sounds emitted by mustached bats. The Journal of the Acoustical Society of America, 96: 1229–1254. Google Scholar
  • 43. Kastein, H. B., R. Winter, A. K. Vinoth Kumar, S. Kandula, and S. Schmidt. 2013. Perception of individuality in bat vo cal communication: discrimination between, or recognition of, interaction partners? Animal Cognition, 16: 945–959. Google Scholar
  • 44. Knörnschild, M. 2014. Vocal production learning in bats. Current Opinion in Neurobiology, 28: 80–85. Google Scholar
  • 45. Knörnschild, M., and M. Tschapka. 2012. Predator mobbing behaviour in the greater spear-nosed bat, Phyllostomus hastatus. Chiroptera Neotropical, 18: 1132–1135. Google Scholar
  • 46. Knörnschild, M., O. Behr, and O. Von Helversen. 2006. Babbling behavior in the sac-winged bat (Saccopteryx bilineata). Naturwissenschaften, 93: 451–454. Google Scholar
  • 47. Knörnschild, M., M. Nagy, M. Metz, F. Mayer, and O. Von Helversen. 2012. Learned vocal group signatures in the polygynous bat Saccopteryx bilineata. Animal Behaviour, 84: 761–769. Google Scholar
  • 48. Kobayasi, K., S. Hiryu, R. Shimozawa, and H. Riquimaroux. 2012. Vocalization of echolocation-like pulses for interindividual interaction in horseshoe bats (Rhinolophus ferrumequinum). The Journal of the Acoustical Society of America, 132: 417–422. Google Scholar
  • 49. Kroodsma, D. E. 1977. A re-evaluation of song development in the song sparrow. Animal Behaviour, 25: 390–399. Google Scholar
  • 50. Leippert, D. 1994. Social behaviour on the wing in the false vampire, Megaderma lyra. Ethology, 98: 111–127. Google Scholar
  • 51. Leippert, D., W. Goymann, H. Heribert, G. Marimuthu, and J. Balasingh. 2000. Roost-mate communication in adult Indian false vampire bats (Megaderma lyra): an indication of individuality in temporal and spectral pattern. Animal Cognition, 3: 99–106. Google Scholar
  • 52. Lin, H. J., J. S. Kanwal, T. L. Jiang, Y. Liu, and J. Feng. 2015. Social and vocal behavior in adult greater tube-nosed bats (Murina leucogaster). Zoology, 118(3): 192–202. Google Scholar
  • 53. Liu, Y., J. Feng, and W. Metzner. 2013. Different auditory feed back control for echolocation and communication in horseshoe bats. PLoS ONE, 8: e62710. Google Scholar
  • 54. Lorenz, K. 1970. Companions as factors in the bird's environment. Pp. 101–254, in Studies in animal and human behavior. Harvard University Press, Cambridge, 403 pp. Google Scholar
  • 55. Luo, B., T. L. Jiang, Y. Liu, J. Wang, A. Lin, X. Wei, and J. Feng. 2013. Brevity is prevalent in bat short-range communication. Journal of Comparative Physiology, 199A: 325–333. Google Scholar
  • 56. Ma, J., K. Kobayasi, S. Zhang, and W. Metzner. 2006. Vocal communication in adult greater horseshoe bats, Rhinolophus ferrumequinum. Journal of Comparative Physiology, 192A: 535–550. Google Scholar
  • 57. Manser, M. B., M. B. Bell, and L. B. Fletcher. 2001. The information that receivers extract from alarm calls in suricates. Proceedings of the Royal Society, 268B: 2485–2491. Google Scholar
  • 58. Manser, M. B., R. M. Seyfarth, and D. L. Cheney. 2002. Suricate alarm calls signal predator class and urgency. Trends in Cognitive Sciences, 6: 55–57. Google Scholar
  • 59. Markus, N., and J. K. Blackshaw. 2002. Behaviour of the black flying fox Pteropus alecto: 1. An ethogram of behaviour, and preliminary characterisation of mother-infant interactions. Acta Chiropterologica, 4: 137–152. Google Scholar
  • 60. Martin, P., and P. Bateson. 2007. Measuring behaviour: an introductory guide, 3rd edition. Cambridge University Press, Cambridge, UK. Google Scholar
  • 61. Matsumura, S. 1979. Mother-infant communication in a horseshoe bat (Rhinolophus ferrumequinum nippon): development of vocalization. Journal of Mammalogy, 60: 76–84. Google Scholar
  • 62. Matsumura, S. 1981. Mother-infant communication in a horseshoe bat (Rhinolophus ferrumequinum nippon): vocal communication in three-week-old infants. Journal of Mammalogy, 62: 20–28. Google Scholar
  • 63. Mauss, I. B., and M. D. Robinson. 2009. Measures of emotion: a review. Cognition and Emotion. 23: 1–23. Google Scholar
  • 64. Mcdonald, J. T., I. L. Rautenbach, and J. A. J. Nel. 1990. Roost ing requirements and behaviour of five bat species at De Hoop Guano Cave, southern Cape Province of South Africa. South African Journal of Wildlife Research, 20: 157–161. Google Scholar
  • 65. Meyer, C. F. J., L. M. S. Aguiar, L. F. Aguirre, J. Baum Garten, F. M. Clarke, J. F. Cosson, S. E. Villegas, J. Fahr, D. Faria, N. Furey, et al . 2011. Accounting for detectability improves estimates of species richness in tropical bat surveys. Journal of Applied Ecology, 48: 777–787. Google Scholar
  • 66. Mills, D. S., and J. N. Marchant-Forde. 2010. The encyclopedia of applied animal behaviour and welfare ( D. S. Mills and J. N. Marchant-Forde, eds.). Cambridge University Press, Cambridge, 704 pp. Google Scholar
  • 67. Morse, D. H. 1980. The effect of nectar abundance on foraging patterns of bumble bees. Ecological Entomology, 5: 53–59. Google Scholar
  • 68. Morton, E. S. 1977. On the occurrence and significance of motivation-structural rules in some bird and mammal sounds. The American Naturalist, 111: 855–869. Google Scholar
  • 69. Nelson, J. E. 1964. Vocal communication in Australian flying foxes (Pteropodidae; Megachiroptera). Journal of Comparative Ethology, 21: 857–870. Google Scholar
  • 70. Neuweiler, G. 1969. Verhaltensbeobachtungen an einer indischen Flughundkolonie (Pteropus g. giganteus Brunn). Jour nal of Comparative Ethology, 26: 166–199. Google Scholar
  • 71. Neuweiler, G. 1989. Foraging ecology and audition in echolocating bats. Trends in Ecology & Evolution, 4: 160–166. Google Scholar
  • 72. Pfalzer, G., and J. Kusch. 2003. Structure and variability of bat social calls: implications for specificity and individual reco g nition. Journal of Zoology (London), 261: 21–33. Google Scholar
  • 73. Pollard, K. A., and D. T. Blumstein. 2012. Evolving communicative complexity: insights from rodents and beyond. Philosophical Transactions of the Royal Society, 367A: 1869–1878. Google Scholar
  • 74. Porter, F. L. 1979a. Social behavior in the leaf-nosed bat, Carollia perspicillata: I. Social organization. Journal of Comparative Ethology, 49: 406–417. Google Scholar
  • 75. Porter, F. L. 1979b. Social behaviour in the leaf-nosed bat, Carollia perspicillata: II. Social communication. Journal of Comparative Ethology, 50: 1–8. Google Scholar
  • 76. Prat, Y., M. Taub, and Y. Yovel. 2016. Everyday bat vocalizations contain information about emitter, addressee, context, and behavior. Scientific Reports, 6: 39419. Google Scholar
  • 77. Ratcliffe, J. M., H. M. Ter Hofstede, R. Avila-Flores, M. B. Fenton, G. F. Mccracken, S. Biscardi, J. Blasko, E. Gil Lam, J. Orprecio, and G. Spanjer. 2004. Con specifics influence call design in the Brazilian free-tailed bat, Tadarida brasiliensis. Canadian Journal of Zoology, 82: 966–971. Google Scholar
  • 78. Rossiter, S. J., G. Jones, R. D. Ransome, and E. M. Barratt. 2000. Parentage, reproductive success and breeding behaviour in the greater horseshoe bat (Rhinolophus ferrumequinum). Proceedings of the Royal Society, 267B: 545–551. Google Scholar
  • 79. Schmidt, S. 2005. Understanding wildlife: behavioural ecology and acoustic communication in a Sri Lankan bat, Megadermalyra. Science in Sri Lanka, 6: 17–19. Google Scholar
  • 80. Schmidt, S. 2013. Beyond echolocation: emotional acoustic com munication in bats. Pp. 92–104, in The evolution of emotional communication: from sounds in nonhuman mammals to speech and music in man ( E. Altenmuller, S. Schmidt, and E. Zimmermann, eds.). Oxford University Press, Oxford, 392 pp. Google Scholar
  • 81. Schwartz, C., J. Tressler, H. Keller, M. Vanzant, S. Ezell, and M. Smotherman. 2007. The tiny difference between foraging and communication buzzes uttered by the Mexican free-tailed bat, Tadarida brasiliensis. Journal of Comparative Physiology, 193A: 853–863. Google Scholar
  • 82. Searcy, W. A., and M. D. Beecher. 2009. Song as an aggressive signal in songbirds. Animal Behaviour, 78: 1281–1292. Google Scholar
  • 83. Shapiro, J. T., and A. Monadjem. 2016. Two new bat species for Swaziland and a revised list for the country. Mammalia, 80: 353–357. Google Scholar
  • 84. Siemers, B. M., and R. A. Page. 2009. Behavioral studies of bats in captivity. Pp. 373–392, in Ecological and behavioural methods for the study of bats ( T. H. Kunz and S. Parsons). Johns Hopkins Univeristy Press, Baltimore, 901 pp. Google Scholar
  • 85. Sikes, R. S., and W. L. Gannon. 2011. Guidelines of the American Society of Mammalogists for the use of wild mammals in research. Journal of Mammalogy, 92: 235–253. Google Scholar
  • 86. Simmons, N. B. 2005. Order Chiroptera. Pp. 312–529, in Mam mal species of the World: a taxonomic and geographic reference, 3rd edition ( D. E. Wilson and D. M. Reeder, eds.). Smithsonian Institution Press, Washington, D .C., xxxv + 2142 pp. Google Scholar
  • 87. Skinner, J. D., and R. H. N. Smithers. 1990. The mammals of the South African Subregion. University of Pretoria, Pretoria, 771 pp. Google Scholar
  • 88. Smarsh, G. C., and M. Smotherman. 2017. Behavioral response to conspecific songs on foraging territories of the heart-nosed bat. Behavioral Ecology and Sociobiology, 71: 1–14. Google Scholar
  • 89. Smolker, R. A., J. Mann, and B. B. Smuts. 1993. Use of signature whistles during separations and reunions by wild bottle nose dolphin mothers and infants. Behavioral Ecology and Sociobiology, 33: 393–402. Google Scholar
  • 90. Smotherman, M., M. Knornschild, G. Smarsh, and K. Bohn. 2016. The origins and diversity of bat songs. Journal of Comparative Physiology, 202A: 535–554. Google Scholar
  • 91. Stanton, L. A., M. S. Sullivan, and J. M. Fazio. 2015. A standardized ethogram for the felidae: A tool for behavioral researchers. Applied Animal Behaviour Science, 173: 3–16. Google Scholar
  • 92. Tinbergen, N. 1951. The study of instinct. Clarendon Press, Oxford, 228 pp. Google Scholar
  • 93. West, M. J., A. P. King, and T. M. Freeberg. 1998. Dual signaling during mating in brown-headed cowbirds (Molo thrus ater, family Emberizidae/Icterinae). Ethology, 104: 250–267. Google Scholar
  • 94. Wheeler, B. C., and J. Fischer. 2012. Functionally referential signals: s promising paradigm whose time has passed. Evol utionary Anthropology, 21: 195–205. Google Scholar
  • 95. Wilkins, M. R., N. Seddon, and R. J. Safran. 2013. Evolutionary divergence in acoustic signals: causes and consequences. Trends in Ecology & Evolution, 28: 156–166. Google Scholar
  • 96. Wilkinson, G. S., and J. W. Boughman. 1998. Social calls coordinate foraging in greater spear-nosed bats. Animal Behaviour, 55: 337–350. Google Scholar
  • 97. Wilson, D. E., and D. M. Reeder. 2005. Mammal species of the world: a taxonomic and geographic reference, 3rd edition ( D. E. Wilson and D. M. Reeder, Eds.). Johns Hopkins Uni versity Press, Baltimore, Maryland, xxxv + 2142 pp. Google Scholar
  • 98. Wu, Y., and V. D. Thong. 2011. A new species of Rhinolophus (Chiroptera: Rhinolophidae) from China. Zoological Science, 28: 235–241. Google Scholar
  • 99. Zar, J. H. 2007. Biostatistical analysis, 5th edition. Pearson Prentice Hall, New Jersey, USA, xii + 929 pp . Google Scholar
  • 100. Zimmermann, E. 1995. Acoustic communication in nocturnal prosimians. Pp. 311–330, in Creatures of the dark ( L. Alter Man, G. A. Doyle, and K. M. Izard, eds.). Springer, Boston, MA, 571 pp. Google Scholar

Identyfikator YADDA

bwmeta1.element.agro-c4d44ead-1821-49ad-adbb-35ef7943d61a