PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2002 | 07 | 2A |

Tytuł artykułu

The search for QTL in barley (Hordeum vulgare L.) using a new mapping population

Języki publikacji

EN

Abstrakty

EN
Ninety-nine different lines of the Doubled-Haploid F2 winter barley population W766 ('Angora’ x 'W704/137') were genetically fingerprinted using AFLP, microsatellite, morphological and resistance markers. A preliminary map consisting of seven linkage groups is presented. The map contains a highly distorted region on the long arm of chromosome 3H reflecting preselection of the genotypes for resistance against barley mild mosaic virus. QTL analysis of morphological and phenological traits yielded 99 significant QTL, with most traits (66.3%) being represented by a single QTL. The distribution of significant QTL over the chromosomes was very uneven, the bulk being placed on the long arm of chromosome 3H and no QTL being found on chromosome 4H. This possibly points to the presence of a strong pleiotropic gene on 3H or of a group of related genes that mask weaker effects that were found on other linkage groups as subsignificant QTL. Using two examples of detected QTL (for tillering and grain number), it is shown how the findings of the QTL analysis could be incorporated into an existing morphological simulation model of barley using simple statistical methods.

Wydawca

-

Rocznik

Tom

07

Numer

2A

Opis fizyczny

p.523-535,fig.,ref.

Twórcy

  • Department of Taxonomy, Institute of Plant Genetics and Crop Science, Corrensstrasse 3, D-06466 Gatersleben, Germany

Bibliografia

  • 1. Paterson, A. H., Lander, E. S., Hewitt, J. D., Peterson, S., Lincoln, S. E. and Tanksley S. D. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 335 (1988) 721-726.
  • 2. Lander, E. S. and Botstein, D. Mapping Mendelian Factors Underlying Quantitative Traits Using RFLP Linkage Maps. Genet. 121 (1989) 185-199.
  • 3. Vos, P., Hogers, R., Bleeker, M., Reijans, M., van de Lee, Th., Hornes, M., Frijters, A., Pot, J., Peleman, J., Kuiper, M. and Zabeau, M. AFLP: a new technique for DNA fingerprinting. Nucl. Acids Res. 23 (1995) 4407-4414.
  • 4. Smeets, H. J. M, Brunner, H. G., Ropers, H. H and Wieringa, B. Use of variable simple sequence motifs as genetic-markers - application to study of myotonic-dystrophy. Human Genet. 83 (1989) 245-251.
  • 5. Jones, N., Ougham, H., and Thomas, H. Markers and mapping: we are all geneticists now. New Phytol. 137 (1997) 165-177.
  • 6. Becker, J., Vos, P., Kuiper, M., Salamini, F. and Heun, M. Combined mapping of AFLP and RFLP markers in barley. Mol. Gen. Genet. 249 (1995) 65-73.
  • 7. Castiglioni, P., Pozzi, C., Heun, M., Terzi, V., Müller, K. J., Rohde, W. and Salamini, F. An AFLP-Based Procedure for the Efficient Mapping of Mutations and DNA Probes in Barley. Genet. 149 (1998) 2039-2056.
  • 8. Graner, A., Jahoor, A., Schondelmaier, J., Siedler, H., Pillen, K., Fischbeck, G., Wenzel, G. and Herrmann, R. G. Construction of an RFLP map of barley. Theor. Appl. Genet. 83 (1991) 250-256.
  • 9. Heun, M., Kennedy, A. E., Anderson, J. A., Lapitan, N. L. V., Sorrells, M. E. and Tanksley, S. D. Construction of a restriction fragment length polymorphism map for barley (Hordeum vulgare). Genome 34 (1991) 437- 447.
  • 10. Jahoor, A., Backes, G., Graner, A., Herrmann, R. G. and Fischbeck, G. Development of RFLP markers for barley. Plant Breed. 107 (1991) 73-76.
  • 11. Costa, J. M., Corey, A., Hayes, P. M., Jobet, C., Kleinhofs, A., Kopisch-Obusch, A., Kramer, S. F., Kudrna, D., Li, M., Riera-Lizarazu, O., Sato, K., Szucs, P., Toojinda, T., Vales, M. I. and Wolfe, R. I. Molecular mapping of the Oregon Wolfe Barleys: a phenotypically polymorphic doubled-haploid population. Theor. Appl. Genet. 102 (2001) 415-424.
  • 12. Pan, A., Hayes, P. M., Chen, F., Chen, T. H. H., Blake, T., Wright, S., Karsai, I. and Bedö Z. Genetic analysis of the components of winterhardiness in barley (Hordeum vulgare L.). Theor. Appl. Genet. 89 (1994) 900-910.
  • 13. Börner, A., Korzun, V., and Worland, A. J. Comparative genetic mapping of loci affecting plant height and development in cereals. Euphytica 100 (1998) 245-248.
  • 14. Korzun, V., Röder, M., Worland, A. J. and Börner, A. Intrachromosomal mapping of genes for dwarfing (Rht12) and vernalization response (Vrnl) in wheat by using RFLP and microsatellite markers. Plant Breed. 116 (1997) 227-232.
  • 15. Yan, X., Zhu, J., Xu, S. and Xu, Y. Genetic effects of embryo and endosperm for four malting quality traits of barley. Euphytica 106 (1999) 27-34.
  • 16. Kjaer, B., Haahr, V. and Jensen, J. Associations between 23 quantitative traits and 10 genetic markers in a barley cross. Plant Breed. 106 (1991) 261-274.
  • 17. Backes, G., Graner, A., Foroughi-Wehr, B., Fischbeck, G., Wenzel, G. and Jahoor, A. Localization of quantitative trait loci (QTL) for agronomic important characters by the use of a RFLP map in barley (Hordeum vulgare L.). Theor. Appl. Genet. 90 (1995) 294-302.
  • 18. Backes, G., Schwarz, G., Wenzel, G. and Jahoor, A. Comparison between QTL analysis of powdery mildew resistance in barley based on detached primary leaves and on field data. Plant Breed. 115 (1996) 419-421.
  • 19. Thomas, W. T. B., Baird, E., Fuller, J. D., Lawrence, P., Young, G. R., Russell, J., Ramsay, L., Waugh, R. and Powell, W. Identification of a QTL decreasing yield in barley linked to Mlo powdery mildew resistance. Mol. Breed. 4 (1998) 381-393.
  • 20. Kicherer, S., Backes, G., Walther, U. and Jahoor, A. Localising QTLs for leaf rust resistance and agronomic traits in barley (Hordeum vulgare L.). Theor. Appl. Genet. 100 (2000) 881-888.
  • 21. Forster, B. P., Ellis, R. P., Thomas, W. T. B., Newton, A. C., Tuberosa, R., This, D., El-Enein, R. A., Bahri, M. H. and Ben Salem, M. The development and application of molecular markers for abiotic stress tolerance in barley. J. Exp. Bot. 51 (2000) 19-27.
  • 22. Foroughi-Wehr, B., Mix, G., Gaul, H. and Wilson, H. M. Plant production from cultured anthers of Hordeum vulgare L. Z. Pflanzenzüchtg. 77 (1976) 198-204.
  • 23. Friedt, W. and Foroughi-Wehr, B. Field performance of androgenetic doubled haploid spring barley from F1 hybrids. Z. Pflanzenzüchtg. 90 (1983)177-184.
  • 24. Foroughi-Wehr, B. and Friedt, W. Rapid production of recombinant barley yellow mosaic virus resistant Hordeum vulgare lines by anther culture. Theor. Appl. Genet. 67 (1984) 377-382.
  • 25. Kuhlmann, U. and Foroughi-Wehr, B. Production of doubled haploid lines in frequencies sufficient for barley breeding programs. Plant Cell Reports 8 (1989) 78-81.
  • 26. Wenzel, G. and Foroughi-Wehr, B. Progeny tests of barley, wheat, and potato regenerated from cell cultures after in vitro selection for disease resistance. Theor. Appl. Genet. 80 (1990) 359-365.
  • 27. Hack, H., Bleiholder, H., Buhr, L., Meier, U., Schnock-Fricke, U., Weber, E. And Witzenberger, A. Einheitliche Codierung der phänologischen Entwicklungsstadien mono- und dikotyler Pflanzen. - Erweiterte BBCH-Skala, Allgemein - A uniform code for phenological growth stages of mono- and dicotyledonous plants - Extended BBCH scale, general -.Nachrichtenbl. Deut. Pflanzenschutzd. 44 (1992) 265-270.
  • 28. Buck-Sorlin, G. H. L-system model of the vegetative growth of winter barley (Hordeum vulgare L.). in: Fifth German Workshop on Artificial Life. Abstracting and Synthesizing the Principles of Living Systems, (Polani, D., Kim, J., Martinetz, T., Eds.), Lübeck, Akademische Verlagsgesellschaft, Berlin, 2002, 53-64.
  • 29. Blattner, F. R., Kadereit, J. W. Morphological evolution and ecological diversification of the forest dwelling poppies (Papaveraceae: Chelidonioideae) as deduced from a molecular phylogeny of the ITS region. Plant Syst. Evol. 219 (1999) 181-197.
  • 30. Lander, E. S., Green, P., Abrahamson, J., Barlow, A., Daly, M. J., Lincoln, S. E. and Newburg, L. MAPMAKER: An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1 (1987) 174-181.
  • 31. Manly, K. F. and Olson, J. M. Overview of QTL mapping software and introduction to Map Manager QT. Mammalian Genome 10 (1999) 327- 334.
  • 32. Stam, P. Construction of integrated genetic-linkage maps by means of a new computer package - JoinMap. Plant J. 3(5) (1993) 739-744.
  • 33. Nelson, J. C. QGENE. Software for marker-based genome analysis and breeding. Mol. Breed. 3 (1997) 239-245.
  • 34. Prusinkiewicz, P. and Lindenmayer, A. The Algorithmic Beauty of Plants. New York, Berlin, Heidelberg, Springer, 1990.
  • 35. Mĕch, R. CPFG Version 3.4 User's Manual. Calgary, University of Calgary, 1998.
  • 36. Buck-Sorlin, G. H. and Bachmann, K. Simulating the morphology of barley spike phenotypes using genotype information. Agronomie 20 (2000) 691-702.
  • 37. Franckowiak, J. D. Revised linkage maps for morphological markers in barley, Hordeum vulgare. Barley Genet. Newsl. 26 (1996) 4. (http://wheat.pw.usda.gov/ggpages/bgn/26/text261a.html#4).
  • 38. Nonaka, S. A new type of cultivar, Mitake, with very few in number, but thick and stiff culms. Barley Genet. Newsl. 3 (1973) 45-47.
  • 39. Mackay, T. F. C. The genetic architecture of quantitative traits. Ann. Rev. Genet. 35 (2001) 303-339.
  • 40. Maniatis, T. and Reed, R. An extensive network of coupling among gene expression machines. Nature 416 (2002) 499-506.
  • 41.White, J. W. and Hoogenboom, G. Simulating effects of genes for physiological traits in a process-oriented crop model. Agron. J. 88 (1996) 416-422.
  • 42. Kearsey, M. J. and Hyne, V. QTL analysis: a simple 'marker-regression' approach. Theor. Appl. Genet. 89 (1994) 698-702.
  • 43. Charmet, G. Power and accuracy of QTLdetection: simulation studies of one-QTL models. Agronomie 20 (2000) 309-323.

Identyfikator YADDA

bwmeta1.element.agro-c358fc97-53c2-4066-8574-32a943a135e9