PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 27 | 6 |

Tytuł artykułu

Photosynthetic responses of tomato leaves to salt and cadmium stresses: growth and chlorophyll a fluorescence kinetic analyses

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
This study investigated the effects of salinity (NaCl) and cadmium (Cd) on leaf growth and photosynthetic parameters of tomato plants (Solanum lycopersicum cv. Rio Grande). Cd and NaCl treatments considerably reduced leaf dry matter and leaf area of tomato plants. Stomatal conductance decreased significantly with increased NaCl and Cd in the growth medium, with the decrease occurring at an early stage under Cd treatments. For the fluorescence parameters, there was no significant difference in the maximum quantum efficiency of PSII (Fv/Fm) for either type of stress. However, the quantum yield of PSII photochemistry (ΦPSII), photochemical quenching (qp), and the intrinsic efficiency of PSII (Фexc) decreased significantly under both NaCl and Cd treatments. Decreases in ΦPSII, qp, and Фexc were coupled with a significant increase in non-photochemical quenching (NPQ), and the highest NPQ was obtained in NaCl-treated plants. The correlation between electron transport rate (ETR) and stomatal conductance showed that stomatal closure is associated with a down-regulation of ETR, which is compensated by an increase in non-photochemical quenching.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

27

Numer

6

Opis fizyczny

p.2499-2508,fig.,ref.

Twórcy

autor
  • Faculte des Sciences de Tunis, Universite de Tunis El Manar, Tunis, Tunisia
autor
  • Faculte des Sciences de Tunis, Universite de Tunis El Manar, Tunis, Tunisia
autor
  • Faculte des Sciences de Tunis, Universite de Tunis El Manar, Tunis, Tunisia
autor
  • Institut National de Recherche en Genie Rural Eaux et Forets, Ariana, Tunisia
autor
  • Faculte des Sciences de Tunis, Universite de Tunis El Manar, Tunis, Tunisia

Bibliografia

  • 1. MUNNS R., TESTER M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59, 651, 2008.
  • 2. MANSOUR M.M.F., ALI E.F. Glycinebetaine in saline conditions: an assessment of the current state of knowledge. Acta Physiol. Plant. 39, 56, 2017.
  • 3. JI P., SUN T., SONG Y., ACKLAND M.L., LIU Y. Strategies for enhancing the phytoremediation of cadmium-contaminated agricultural soils by Solanum nigrum L. Environ Pollut. 159, 762, 2011.
  • 4. Ci D., Jiang D., Wollenweber B., Dai T., Jing Q., Cao W. Cadmium stress in wheat seedlings: growth, cadmium accumulation and photosynthesis. Acta Physiol. Plant. 32, 365, 2010.
  • 5. ZEMANOVA V., PAVLÍK M., PAVLÍKOVA D., HNILICKA F., VONDRACKOVA S. Responses to Cd stress in two noccaea species (Noccaea praecox and Noccaea caerulescens) originating from two contaminated sites in Mezica, Slovenia and Redlschlag, Austria. Arch. Environ. Contam. Toxicol. 70, 464, 2016.
  • 6. GILL S.S., KHAN N.A, TUTEJA N. Differential cadmium stress tolerance in five Indian mustard (Brassica juncea L.) cultivars: an evaluation of the role of antioxidant machinery. Plant Signal Behav. 6, 293, 2011.
  • 7. FERNÁNDEZ R., BERTRAND A., REIS R., MOURATO M.P., MARTINS L.L., GONZÁLEZ A. Growth and physiological responses to cadmium stress of two populations of Dittrichia viscosa (L.) Greuter. J. Hazard Mater. 244, 555, 2013.
  • 8. KHAN A.L., WAQAS M., HUSSAIN J., AL-HARRASI A., LEE I.J. Fungal endophyte Penicillium janthinellum LK5 can reduce cadmium toxicity in Solanum lycopersicum (Sitiens and Rhe). Biol. Fertil. Soils. 50, 75, 2014.
  • 9. DA SILVA A.J.C.W.A., DO NASCIMENTO A., DA SILVA C.W.A., GOUVEIA-NETO A., DA SILVA JR E.A. LED-Induced chlorophyll fluorescence spectral analysis for the early detection and monitoring of cadmium toxicity in maize plants. Water Air Soil Pollut. 22, 3527, 2012.
  • 10. LI S., YANG W., YANG T., CHEN Y., NI W. Effects of cadmium stress on leaf chlorophyll fluorescence and photosynthesis of Elsholtzia argyi a cadmium accumulating plant. Int. J. Phytorem. 17, 85, 2015.
  • 11. MITTELSTET A.R., STORM D., STOECKER A., Using SWAT and empirical relationship to simulate crop yields and salinity levels in the North Fork River Basin. International Journal of Agricultural and Biological Engineering. 8, 1, 2015.
  • 12. FLOWERS T.J., MUNNS R., COLMER T.D. Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes. Annals of botany. 115, 419, 2015.
  • 13. GUPTA N.K., MEENA S.K., GUPTA S., KHANDELWAL S.K. Gas exchange, membrane permeability and ion uptake in two species of Indian Jujube differing in salt tolerance. Photosynthetica. 40, 535, 2002.
  • 14. AKRAM M.S., ASHRAF M., SHAHBAZ M., AKRAM N.A. Growth and photosynthesis of salt-stressed sunflower (Helianthus annuus) plants as affected by foliar-applied different potassium salts. J. Plant Nutr. Soil Sci. 172, 884, 2009.
  • 15. CIOBANU I., SUMALAN R. The effects of the salinity stress on the growing rates and physiological characteristics to the Lycopersicum esculentum Species. Bulletin UASVM Horticulture. 66, 616, 2009.
  • 16. MEGDICHE W., HESSINI K., GHARBI F., JALEEL C.A., KSOURI R., ABDELLY C. Photosynthesis and photosystem 2 efficiency of two salt-adapted halophytic seashore Cakile maritima ecotypes. Photosynthetica. 46, 410, 2008.
  • 17. MANAN A., AYYUB C.M., PERVEZ M.A., AHMAD R. Methyl jasmonate brings about resistance against salinity stressed tomato plants by altering biochemical and physiological processes. Pakistan Journal of Agriculture Sciences. 53, 35, 2016.
  • 18. MEHTA P., KRASLAVSKY V., BHARTI S., ALLAKHVERDIEV S.I., JAJOO A. Analysis of saltstress induced changes in photosystem II heterogeneity by prompt fluorescence and delayed fluorescence in wheat (Triticum vulgare) leaves. Journal of Photochemistry and Photobiology B: Biology. 104, 308, 2011.
  • 19. MAXWELL K., JOHNSON G. N. Chlorophyll fluorescence as practical guide. J. Exp. Bot. 51, 659, 2000.
  • 20. FLEXAS J., MEDRANO H. Energy dissipation in C3 plants under drought. Functional Plant Biology. 29, 1209, 2002.
  • 21. BRESSON J., VASSEUR F., DAUZAT M., KOCH G., GRANIER C., VILE D. Quantifying spatial heterogeneity of chlorophyll fluorescence during plant growth and in response to water stress. Plant Methods. 11, 1, 2015.
  • 22. FU W., LI P., WU Y. Effects of different light intensities on chlorophyll fluorescence characteristics and yield in lettuce. Sci. Hortic. 135, 45, 2012.
  • 23. HU H., ZHANG H., CHU J., ZHANG X., ZHENG K., LI S., SUN X., ZHANG X. Leaf chlorophyll fluorescence effect of different rice (Oryza sativa L.) genotypes under salt stress. Adv. Sci. Lett. 11, 706, 2012.
  • 24. ASKRI H., GHARBI F., REJEB S., MLIKI A., GHORBEL A. Identification du mécanisme physiologique de tolérance à la salinité chez la vigne sauvage Vitis vinifera. ssp. Sylvestris. Revue des Regions Arides. 35, 739, 2014.
  • 25. LABIDI N., AMMARI M., SNOUSSI S., MESSELINI N., GHARBI F., ABDELLY C. Stimulated growth rate by restriction of P availability at moderate salinity but insensitive to P availability at high salinity in Crithmum maritimum. Acta Biologica Hungarica. 62, 302, 2011.
  • 26. STREB P., AUBERT S., GOUT E., FEIERABEND J., BLIGNY R. Cross tolerance to heavy-metal and coldinduced photoinhibiton in leaves of Pisum sativum acclimated to low temperature. Physiol. Mole. Biol. Plants. 14, 185, 2008.
  • 27. DUNWEI C.I., JIANG D., WOLLENWEBER B., DAI T., JING Q., CAO W. Cadmium stress in wheat seedlings: growth, cadmium accumulation and photosynthesis. Acta Physiol. Plant. 32, 365, 2010.
  • 28. ZHANG J.T., MU C.S. Effects of saline and alkaline stresses on the germination, growth, photosynthesis, ionic balance and antioxidant system in an alkali-tolerant leguminous forage Latyrus quenquenervius. Soil Sci. Plant Nut. 55, 685, 2009.
  • 29. CHAVES M.M., FLEXAS J., PINHEIRO C. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann. Bot. 103, 551, 2009.
  • 30. GIANNAKOULA A.E., ILIAS I.F. The effect of water stress and salinity on growth and physiology of tomato (Lycopersicon esculentum Mill.). Arch. Biol. Sci. Belgrade. 65, 611, 2013.
  • 31. HEIDARI A., BANDEHAGH A., TOORCHI M. Effects of NaCl Stress on Chlorophyll Content and Chlorophyll Fluorescence in Sunflower (Helianthus annuus L.) lines. YYU. J. Agr. Sci. 24, 111, 2014.
  • 32. MOHAMED A.A., CASTAGNA A., RANIERI A., SANITA DI TOPPI L. Cadmium tolerance in Brassica juncea roots and shoots is affected by antioxidant status and phytochelatin biosynthesis. Plant Physiol. Biochem. 57, 15, 2012.
  • 33. GILL S.S., KHAN N.A., TUTEJA N. Differential cadmium stress tolerance in five Indian mustard (Brassica juncea L.) cultivars: an evaluation of the role of antioxidant machinery. Plant Signal Behav. 6, 293, 2011.
  • 34. FERNÁNDEZ R., BERTRAND A., REIS R., MOURATO M.P., MARTINS L.L., GONZÁLEZ A. Growth and physiological responses to cadmium stress of two populations of Dittrichia viscosa (L.) Greuter. J. Hazard Mater. 244, 555, 2013.
  • 35. KHAN A.L., WAQAS M., HUSSAIN J., AL-HARRASI A., LEE I.J. Fungal endophyte Penicillium janthinellum LK5 can reduce cadmium toxicity in Solanum lycopersicum (Sitiens and Rhe). Biol. Fertil. Soils. 50, 75, 2014.
  • 36. AVENSON T.J., AHN T.K., ZIGMANTAS D., LIZ K.K., BALLOTTARI M. Zeaxanthin radical cation formation in minor light-harvesting complexes of higher plant antenna. J. Biol. Chem. 283, 3550, 2008.
  • 37. CAZZONELLI C.I., POGSON B.J. Source to sink: regulation of carotenoid biosynthesis in plants. Trends Plant Sci. 15, 266, 2010.
  • 38. MURCHIE E.H., NIYOGI K.K. Manipulation of Photoprotection to Improve Plant Photosynthesis. Plant Physiology. 155, 86, 2011.
  • 39. LAMBREV P.H., MILOSLAVINA Y., JAHNS P., HOLZWARTH A.R. On the relationship between non-photochemical quenching and photoprotection of Photosystem II. Biochim. Biophys. Acta. 1817, 760, 2012.
  • 40. PINNOLA A., DALL’OSTO L., GEROTTO C., MOROSINOTTO T., BASSI R., ALBORESI A. Zeaxanthin binds to light-harvesting complex stress-related protein to enhance non photochemical quenching in Physcomitrella patens. Plant Cell. 25, 3519, 2013.
  • 41. LI Q., DENG M., XIONG Y., COOMBES A., ZHAO W. Morphological and photosynthetic response to high and low irradiance of Aeschynanthus longicaulis. Sci. World J. 2014, 1, 2014.
  • 42. HADDAD M., BOUKRIS M. The effect of geothermal water on quality of tomatoes. In: Proceedings of the International Workshop Mednine, Tunisia. 156, 1999.
  • 43. HACHICHA M. Les sols sales et leur mise en valeur en Tunisie. Secheresse. 18, 45, 2007.
  • 44. KAHLAOUI B., HACHICHA M., TEIXEIRA J., MISLE E., FIDALGO F., HANCHI, B. Response of two tomato cultivars to field-applied proline and salt stress. Journal of Stress Physiology and Biochemistry. 9, 357, 2013.
  • 45. MONTEITH J. L., CAMPBELL G. S., POTTER E. A. Theory and performance of a dynamic diffusion porometer. Agric. For. Meteorol. 44, 27, 1988.
  • 46. BAKER N.R., ROSENQVIST E. Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J. Exp. Bot. 55, 1607, 2004.
  • 47. BJÖRKMAN O., DEMMIG-ADAMS B. Regulation of photosynthetic light energy capture, conversion, and dissipation in leaves of higher plants. In: Schulze, E.D., Caldwell, M.M. (Eds.), Ecophysiology of Photosynthesis. Springer-Verlag, Berlin. 17, 1994.
  • 48. VAN KOOTEN O., SNEL J. F. H. The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth. Res. 25, 147, 1990.
  • 49. GENTY B., BRIANTAIS J.M., BAKER N.B. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta. 99, 87, 1989.
  • 50. HARBINSON J., GENTY B., BAKER N. B. Relationship between the quantum efficiencies of photosystems I and II in pea leaves. Plant Physiol. 90, 1029, 1989.
  • 51. SCHREIBER U., BILGER W., NEUBAUER C. Chlorophyll fluorescence as a non invasive indicator for rapid assessment of in vivo photosynthesis. In: Schulze, E.D., Caldwell, M.M. (Eds.), Ecophysiology of Photosynthesis. Springer-Verlag, Berlin-Heidelberg-New York. 49, 1995.
  • 52. KRALL J.P., EDWARDS G.E. Relationship between photosystem II activity and CO₂ fixation in leaves. Physiol. Plant. 86, 180, 1992.
  • 53. LICHTENTHALER H.K. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol. 148, 350, 1987.
  • 54. WANG Y., JIANG X., LI K., WU M., ZHANG R., ZHANG L., CHEN G. Photosynthetic responses of Oryza sativa L. seedlings to cadmium stress: physiological, biochemical and ultrastructural analyses. Biometals. 27, 389, 2014.
  • 55. REDENDO-GOMEZ S., MATEOS NARANGO E., ANDRADES MORENO L. Accumulation and tolerance characteristics of cadmium in halophytic Cdhyperaccumulator Anthrocnemum macrostachium. J. Hasard Mat. 184, 299, 2010.
  • 56. ALI S., CHARLES C.T., GLICK R.B. Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase. Plant Physiology and Biochemistry. 80, 160, 2014.
  • 57. MANAN A., CHOUDHARY M.A., AHMAD R., ADNAN M., BUKHARI M.A., MUSTAFA Z. Salinity Induced Deleterious Effects on Biochemical and Physiological Processes of Tomato. Pak. J. Life Soc. Sci. 14, 83, 2016.
  • 58. AL-HARBI A.R., AL-OMRAN A.M., ALENAZI M.M., WAHB-ALLAH M.A. Salinity and deficit irrigation influence tomato growth, yield and water use efficiency at different developmental stages. Int. J. Agri. Bio. 17, 241, 2015.
  • 59. COSTA, A.C., REZENDE-SILVA S.L., MEGGUER C.A., MOURA L.M.F., ROSA M., SILVA A.A. The effect of irradiance and water restriction on photosynthesis in young jatoba-do-cerrado (Hymenaea stigonocarpa) plants. Photosynthetica. 53, 118, 2015.
  • 60. GILL S.S., KHAN N.A., TUTEJA N. Differential cadmium stress tolerance in five Indian mustard (Brassica juncea L.) cultivars: an evaluation of the role of antioxidant machinery. Plant Signal Behav. 6, 293, 2011.
  • 61. KHAN A.L., WAQAS M., HUSSAIN J., AL-HARRASI A., LEE I.J. Fungal endophyte Penicillium janthinellum LK5 can reduce cadmium toxicity in Solanum lycopersicum (Sitiens and Rhe). Biol. Fertil. Soils. 50, 75, 2014.
  • 62. CARMO-SILVA A.E., GORE M.A., ANDRADE-SANCHEZ P., FRENCH A.N., HUNSAKER D.J., SALVUCCI M.E. Decreased CO₂ availability and inactivation of Rubisco limit photosynthesis in cotton plants under heat and drought stress in the field. Environmental and Experimental Botany. 83, 1, 2012.
  • 63. SAKURABA Y., LEE S.H., KIM Y.S., PARK O.K., HORTENSTEINER S., PAEK N.C. Delayed degradation of chlorophylls and photosynthetic proteins in Arabidopsis autophagy mutants during stress-induced leaf yellowing. J. Exp. Bot. 65, 3915, 2014.
  • 64. BACHA H., TEKAYA M., DIRINE S., GUASMI F., TOUIL L., ENNEB H., TRIKI F., CHEOUR T. F., FERCHICHI A. Impact of salt stress on morpho-physiological and biochemical parameters of Solanum lycopesicum cv Microtom leaves. South African journal of Botany. 108, 364, 2016.
  • 65. KAYA C., ASHRAF M., SONMEZ O., AYDEMIR S., TUNA A.T., CULLU M.A. The influence of arbuscular mycorrhizal colonisation on key growth parameters and fruit yield of pepper plants grown at high salinity. Scientia Horticulturae. 121, 1, 2009.
  • 66. YANG C.Z., YANIGER S.I., JORDAN V.C., KLEIN D.J., BITTNER G.D. Most plastic products release estrogenic chemicals: a potential health problem that can be solved. Environmental Health Perspectives. 119, 989, 2011.
  • 67. AZZABI G., PINNOLA A., BETTERLE N., BASSI R., ALBORESI A. Enhancement of Non-Photochemical Quenching in the Bryophyte Physcomitrella patens During Acclimation to Salt and Osmotic Stress. Plant Cell Physiol. 53, 1815, 2012.
  • 68. THAPAR R., KUMAR SRIVASTAVA A., BHARGAVA P., MISHRA Y., CHAND RAI L. Impact of different abiotic stresses on growth, photosynthetic electron transport chain, nutrient uptake and enzyme activities of Cu-acclimated Anabaena doliolum. Journal of Plant Physiology. 165, 306, 2008.
  • 69. MESNOUA M., MATEOS-NARANJO E., BARCIA-PIEDRAS J.M.J., PEREZ-ROMERO A., LOTMANI B., REDONDO-GOMEZ S. Physiological and biochemical mechanisms preventing Cd-toxicity in the hyperaccumulator Atriplex halimus L. Plant Physiology and Biochemistry. 106, 30, 2016.
  • 70. CHEN L., LONG X.H., ZHANG Z.H., ZHENG X.T., RENGEL Z., LIU Z.P. Cadmium accumulation and translocation in two Jerusalem Artichoke (Helianthus tuberosus L.) cultivars. Pedosphere. 21, 573, 2011.
  • 71. GHARBI F., REJEB S., GHORBAL M. H., MOREL J. L. Plant response to copper toxicity as affected by plant species and soil type. Journal of Plant Nutrition. 28, 379, 2005.
  • 72. NAUMANN J.C., YOUNG D.R., ANDERSON J.E. Linking leaf chlorophyll fluorescence properties to physiological responses for detection of salt and drought stress in coastal plant species. Physiol. Plant. 131, 422, 2007.
  • 73. ZRIBI L., GHARBI F., REZGUI F., REJEB S., NAHDI H., REJEB M.N. Application of chlorophyll fluorescence for the diagnosis of salt stress in tomato Solanum lycopersicum (variety Rio Grande). Sci. Hortic. 120, 367, 2009.
  • 74. CI D., JIANG D., WOLLENWEBER B., DAI T., JING Q., CAO W. Cadmium stress in wheat seedlings: growth, cadmium accumulation and photosynthesis. Acta Physiol. Plant. 32, 365, 2010.
  • 75. AI-ABDOULHADI I.A., DINAR H.A., EBERT G., BÜTTNER C. Influence of salinity stress on photosynthesis and chlorophyll content in date palm. Afr. J. Agric. Res. 7, 3314, 2012.
  • 76. MURILLO-AMADOR B., REYES-PÉREZ J.J., HERNÁNDEZ-MONTIEL L.G., RUEDA-PUENTE E. O., DE LUCIA B., BELTRÁN-MORALES F.A., RUIZ-ESPINOZA F.H. Physiological responses to salinity in Solanum lycopersicum l. varieties. Pak. J. Bot. 49, 809, 2017.
  • 77. FLOWERS T.J., MUNNS R., COLMER T.D. Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes. Annals of Botany. 115, 419, 2015.
  • 78. MURCHIE E.H., LAWSON T. Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. J. Exp. Bot. 64, 3983, 2013.
  • 79. GORBE E., CALATAYUD A. Applications of chlorophyll fluorescence imaging technique in horticultural research: a review. Sci. Hortic. 138, 24, 2012.
  • 80. PORCAR-CASTELL A., TYYSTJARVI E., ATHERTON J., VAN DER TOL C., FLEXAS J., PFÜNDEL E. E., MORENO J., FRANKENBERG C., BERRY J. A. Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: mechanisms and challenges. J. Exp. Bot. 65, 4065, 2014.
  • 81. SELLAMI R., GHARBI F., REJEB S., REJEB M.N., HENCHI B., ECHEVARRIA G., MOREL J.L. Effects of Nickel Hyperaccumulation on Physiological Characteristics of Alyssum murale Grown on Metal Contaminated Waste Amended Soil. Int. J. Phytoremed. 14, 609, 2012.
  • 82. NASRAOUI-HAJAJI A., GHARBI F., GHORBEL M.H., GOUIA H. Cadmium stress effects on photosynthesis and PSII efficiency in tomato grown on NO3- or NH4+ as nitrogen source. Acta Bot. Gallica. 157, 101, 2010.
  • 83. STEPIEN P., JOHNSON G.N. Contrasting responses of photosynthesis to salt stress in the glycophyte Arabidopsis and the halophyte Thellungiella: role of the plastid terminal oxidase as an alternative electron sink. Plant Physiol. 149, 1154, 2009.
  • 84. NIYOGI K.K., SHIH C., CHOW W.S., POGSON B.J., DELLA PENNA D., BJORKMAN O. Photoprotection in a zeaxanthin- and lutein-deficient double mutant of Arabidopsis. Photosynth. Res. 67, 139, 2001.
  • 85. ISMAIL I.M., BASAHI J.M., HASSAN I.A. Gas exchange and chlorophyll fluorescence of pea (Pisum sativum L.) plants in response to ambient ozone at a rural site in Egypt. Sci. Total Environ. 497, 585, 2014.
  • 86. MARTINS S.C.V., GALMES J., MOLINS A., DAMATTA F.M. Improving the estimation of mesophyll conductance to CO₂: on the role of electron transport rate correction and respiration. J. Exp. Bot. 64, 3285, 2013.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-c2ca21f4-fd67-49ae-bad2-b765a34c10ee
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.