PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 3 |

Tytuł artykułu

Determining the homogeneity and stand quality values in pure Oriental spruce (Picea orientalis (L.) Link.) grown in Turkey

Autorzy

Warianty tytułu

Języki publikacji

PL

Abstrakty

EN
The forests of the eastern Black Sea in Turkey are populated by Oriental spruce (Picea orientalis (L.) Link.), a heterogeneous species in terms of the quality of wood. Oriental spruce forests have been managed and used for lumbering in lack of consideration of the homogeneity of the trees. Furthermore, it is necessary to know what kinds of Oriental spruce have been found and which of them produce best quality of wood so that future improvement can be planned accordingly. In this work, a quantitative value developed. Homogeneous index (HI) and stand quality values (SQV) are calculated from the sample plots taken from 75 areas. The HI value varied from 1,95 to 6,74 in the even-aged stands, and 1,88-7,15 in uneven-aged stands. For both structures, HI = 3 value can be accepted as a general selective range. SQV values range 2,16-4,83 in even-aged stands and 3,47-4,77 in uneven-aged stands. According to regression analysis, mathematical models, and SQV, there are no statistically significant differences between the aspect and slope, but there is a positive correlation among the height, stand volume, and age. According to the results, homogeneous index is a classification method that can be used for discrimination of stands. Moreover, the operation of pure spruce stand according to uneven-aged management principles will contribute to the formation of better quality and stable stands.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

28

Numer

3

Opis fizyczny

p.1313-1324,fig.,ref.

Twórcy

autor
  • Department of Silviculture, Faculty of Forestry, Karadeniz Technical University, 61080 Trabzon, Turkey

Bibliografia

  • 1. KÜÇÜK M., Natural spreading area of the oriental spruce, oriental spruce handbook, Ormancılık Araştırma Enstitüsü Yayınları, El Kitabı Dizisi: 5, Ankara, 78, 1989 [in Turkish].
  • 2. FARJON A., Picea orientalis, oriental spruce, The IUCN Red List of Threatened Species 2013: e.T42332A2973275, 2013.
  • 3. ORMAN GENEL MÜDÜRLÜĞÜ, Forest Enventery of Turkey - 2015, Orman Bakanlığı, Ankara, 14, 2015 [In Turkish].
  • 4. DEMIRCI A., YAVUZ H., ÜÇLER A.Ö., OKTAN E., YÜCESAN Z., Standing establishments in pure east spruce forests in Turkey, growth and growth relationships and silvicultural recommendations. TÜBİTAK- TOGTAG, Proje No: TARP-2051, 169, Trabzon, 2002 [In Turkish].
  • 5. MARTÍNEZ PASTUR G.J., CELLINI J.M., LENCINAS M.V., PERI P.L., Stand growth model using volume increment/basal area ratios, Journal of Forest Science, 54, (3), 102, 2008.
  • 6. LIN C.J., LAIHO O., LAHDE E., Norway spruce (Picea abies L.) regeneration and growth of understory trees under single-tree selection silviculture in Finland, Eur. J. Forest Res., 131, 683, 2012.
  • 7. FORRESTER D.I., The spatial and temporal dynamics of species interactions in mixed-species forests: From pattern to process, Forest Ecology and Management, 312, 282, 2014.
  • 8. KAPUCU F., Evaluation of some species like Oriental sprıce (Picea orientalis (L.) Carr.), Scots pine (Pinus silvestris L.), Eastern Black Sea Fir (Abies nordmanniana Spach.) and Oriental beech (Fagus orientalis Lipsky.) in Eastern Black Sea Region of Turkey. KTÜ Orman Fakültesi, Amenajman Anabilim Dalı, Doçentlik Tezi, Trabzon, 1978 [In Turkish].
  • 9. SNIDERHAN A.E., BALTZER J.L., Growth dynamics of black spruce (Picea mariana) in a rapidly thawing discontinuous permafrost peatland, J. Geophys. Res. Biogeosci., 121, 2988, 2016.
  • 10. BALANDA M., Spatio-temporal structure of natural forest: A structural index approach, Beskydy, 5 (2), 163, 2012.
  • 11. YUANFA L., GANGYING H., ZHONGHUA Z., YANBO, H., SHAOMING Y., Spatial structural characteristics of three hardwood species in Korean pine broad-leaved forest - Validating the bivariate distribution of structural parameters from the point of tree population, Forest Ecology and Management, 314, 17, 2014.
  • 12. CONDÉS S., DEL RIO, M., STERBA, H., Mixing effect on volume growth of Fagus sylvatica and Pinus sylvestris is modulated by stand density, Forest Ecology and Management, 292, 86, 2013.
  • 13. LIIRA J., KOHV K., Stand characteristics and biodiversity indicators along the productivity gradient in boreal forests: Defining a critical set of indicators for the monitoring of habitat nature quality, Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology, 144 (1), 211, 2010.
  • 14. MOORE J.R., LYON A.J., SEARLES G.J., VIHERMAA L.E., The effects of site and stand factors on the tree and wood quality of Sitka spruce growing in the United Kingdom. Silva Fennica, 43 (3), 383, 2009.
  • 15. De CAMINO M.R., Zur bestimmung der bestandeshomogenität, Allgemeine Forst-und Jagdzeitung, 147. Jg. 54-58 s., Frankfurt, 1976. [In German]
  • 16. GEHRLEIN W.V., Consistency in measures of social homogeneity: a connection with proximity to single peaked preferences, Quality & Quantity 39, Kluwer Academic Publishers, Netherlands, 147, 2004.
  • 17. SPEIDEL G., Planung im forstbetrieb, Paul Parey Verlag, Hamburg und Berlin, 258, 1972. [In German].
  • 18. AAKALA T., KUULUVAINEN T., WALLENIUS T., KAUHANEN H., Contrasting patterns of tree mortality in late-successional Picea abies stands in two areas in northern Fennoscandia, Journal of Vegetation Science, 20, 1016, 2009.
  • 19. KUULUVAINEN T., HOFGAARD A., AAKALA T., JONSSON B.G., North Fennoscandian mountain forests: History, composition, disturbance dynamics and the unpredictable future, Forest Ecology and Management, 385, 140, 2017.
  • 20. KALLIO M.H., KRISNAWATI H., ROHADI D., KANNINEN, M., Mahogany and Kadam planting farmers in south Kalimantan: The link between silvicultural activity and stand quality, Small-scale Forestry, 10, 115, 2011.
  • 21. AAKALA T., FRAVER S., D’AMATO A.W., PALIK B.J. Influence of competition and age on tree growth in structurally complex old-growth forests in northern Minnesota, USA, Forest Ecology and Management, 308, 128, 2013.
  • 22. TOOCHI E.C., Forest and environment: Developments in global change ecology, Forest Res. Eng. Int. J., 1 (3), 00016, 2017.
  • 23. KAPUCU F., YAVUZ H., GÜL A.U., Evaluation of homogeneity status and body characteristics in the stands (Fraxinus angustifolia WAHL.)., Turkish Journal of Agriculture and Forestry, 25, 433, 2001 [In Turkish].
  • 24. DEMIRCI A., ÜÇLER A.Ö., YAVUZ H., OKTAN E., YÜCESAN Z., Establishment of the stand structures of pure oriental spruce (Picea orientalis L.Link.) stands by the homogeneity indexes, Third Balkan Scientific Conference, 2-6 October 2001, 1, 350, Sofia, 2001.
  • 25. WALKER X., JOHNSTONE J.F., Widespread negative correlations between black spruce growth and temperature across topographic moisture gradients in the boreal forest, Environ. Res. Lett. 9, 064016, 1, 2014.
  • 26. McKILLUP S., Statistics Explained: An introductory guide for life scientists, 2nd ed., Cambridge University Press, London, UK, 87, 2012.
  • 27. VARELA R.A.D., ALVAREZ P.A., VARELA E.D., IGLESIAS S.C., Prediction of stand quality characteristics in sweet chestnut forests in NW Spain by combining terrain attributes, spectral textural features and landscape metrics, Forest Ecology and Management , 261,17, 2011.
  • 28. BARTELS S.F., CHEN H.Y.H. Is understory plant species diversity driven by resource quantity or resource heterogeneity? Ecology, 91 (7), 1931, 2010.
  • 29. SILVER E.J., D’AMATO A.W., FRAVER S., PALIK B.J., BRADFORD J.B., Structure and development of old-growth, unmanaged second-growth, and extended rotation Pinus resinosa forests in Minnesota, USA, Forest Ecology and Management, 291, 110, 2013.
  • 30. BARBIER N., COUTERON P., PROISY C., MALHI Y. AND GASTELLU-ETCHEGORRY J.P., The variation of apparent crown size and canopy heterogeneity across lowland Amazonian forests. Global Ecology and Biogeography, 19, 72, 2010.
  • 31. FORRESTER D.I., KOHNLE U., ALBRECHT A.T., BAUHUS J., Complementarity in mixed-species stands of Abies alba and Picea abies varies with climate, site quality and stand density, Forest Ecology and Management, 304, 233, 2013.
  • 32. SIITONEN P., TANSKANEN A., LEHTINEN A., Method for selection old-forest reserves, Conservation Biology, 16, 1398, 2002.
  • 33. MICHIE B.R., Uneven-aged stand management and the value of forest land, For. Sci., 31, 116. 1985.
  • 34. HANEWINKEL M., PRETZSCH H., Modeling the conversion from even-aged to uneven-aged stands of Norway spruce (Picea abies L. Karst.) with a distance-dependent growth simulator, Forest Ecology and Management, 134, 55, 2000.
  • 35. BUONGIORNO J., Quantifying the implications of transformation from even to uneven-aged forest stands, Forest Ecology and Management, 151, 121, 2001.
  • 36. GONZALEZ P., NEILSON R.P., LENIHAN J.M., DRAPEK R.J., Global patterns in the vulnerability of ecosystems to vegetation shifts due to climate change, Global Ecology and Biogeography, 19, 755, 2010.
  • 37. DURKAYA, B., DURKAYA, A., MAKINECI, E., KARABURK, T., Estimating above-ground biomass and carbon stock of individual trees in uneven-aged Uludag fir stands, Fresenius Environ. Bull., 22 (1), 428, 2013.
  • 38. BURTON P.J., BERGERON Y., BOGDANSKI B.E.C., JUDAY G.P., KUULUVAINEN T., MCAFEE B.J., OGDEN A.E., TEPLYAKOV V.K., ALFARO R.I., FRANCIS D.A., GAUTHIER S., HANTULA J., Sustainability of boreal forests and forestry in a changing environment G. Mery, P. Katila, G. Galloway, R.I. Alfaro, M. Kanninen, M. Lobovikov, and J. Varjo, editors. Forests and Society - Responding to Global Drivers of Change. International Union of Forest Research Organizations, Vienna, Austria, IUFRO World Series, Chapter 14, 249, 2010.
  • 39. YÜCESAN Z., ÜÇLER A.Ö., OKTAN E., Stability and stand value in high mountain forests in Fırtına Valley, Kastamonu Univ., Journal of Forestry Faculty 13 (1), 117, 2013 [In Turkish].
  • 40. KUULUVAINEN T., Conceptual models of forest dynamics in environmental education and management: keep it as simple as possible, but no simpler, Forest Ecosystems, 3, 18, 2016.
  • 41. YUANFA L., SHAOMING Y., GANGYING H., YANBO H., ZHONGHUA Z., Spatial structure of timber harvested according to structure-based forest management, Forest Ecology and Management, 322, 106, 2014.
  • 42. KOPEĆ D., HALLADIN-DĄBROWSKA A., ZAJĄC I., Flora dynamics in a strictly protected nature reserve, Polish J. of Environ. Stud. 20, (1), 107, 2011.
  • 43. PRETZCH H, Forest Dynamics, Growth and Yield, Springer Verlag, Berlin, Hiedelberg, 337, 2009.
  • 44. BARBIER N., COUTERON P., PROISY C., MALHI Y., GASTELLU-ETCHEGORRY J.P., The variation of apparent crown size and canopy heterogeneity across lowland Amazonian forests, Global Ecology and Biogeography, 19, 72, 2010.
  • 45. LEŠO P., LEŠOVÁ A., KROPIL R., KANUCH P., Response of the dominant rodent species to close-to-nature logging practices in a temperate mixed forest. Ann. For. Res. 59 (1), 259, 2016.
  • 46. WEN W., YUANMAN H., YUEHUI L., JIPING G., LONG C., YU C., ZAIPING X., Plant diversity and vegetation structures in the understory of mixed boreal forests under different management regimes, Polish J. of Environ. Stud. 25, (4), 1749, 2016.
  • 47. ÖZEL H.B., ERTEKİN M., YILMAZ M., KIRDAR E., Factors affecting the success of natural regeneration in oriental beech (Fagus orientalis Lipsky) forests in Turkey, Acta Silv. Lign. Hung., 6, 149, 2010.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-c0fd559a-dc33-446a-9d83-b3a10d7dde87
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.