PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 27 | 2 |

Tytuł artykułu

Effects of silicon on plant resistance to environmental stresses: review

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The role of exogenous silicon in enhancing plant resistance to various abiotic stressors: salinity, drought, metal toxicities and ultraviolet radiation are presented. The data on possible involvement of silicon in reducing the reactive oxygen species generation, intensity of lipid peroxidation, and in some cases, increasing the activity of enzymes of the reactive oxygen species detoxificators: superoxide dismutase, ascorbate peroxidase, glutathione reductase, guaiacol peroxidase and catalase are analyzed.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

27

Numer

2

Opis fizyczny

p.225-232,ref.

Twórcy

  • Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
autor
  • Institute of Agrophysics, Polish Academy of Science, Doswiadczalna 4, 20-290 Lublin 27, Poland

Bibliografia

  • Agarie S., Uchida H. Agata W., Kubota F., and Kaufman P.T., 1998. Effects of silicon on transpiration and leaf conductance in rice plants (Oryza sativa L.). Plant Prod. Sci., 1, 89-95.
  • Ahmed M., Hassen F., and Khurshid Y., 2011. Does silicon and irrigation have impact on drought tolerance mechanism of sorghum? Agr. Water Manag., 98, 1808-1812.
  • Ali A.A. and Alqurainy F., 2006. Activities of antioxidants in plants under environmental stress. In: The Lutein-Prevention and Treatment for Diseases (Ed. N. Motohashi). Transworld Res. Network Press, India.
  • Al-aghabary K., Zhu Z., and Shi Q., 2004. Influence of silicon supply on chlorophyll content, chlorophyll fluorescence, and antioxidative enzyme activities in tomato plants under salt stress. J. Plant Physiol., 27(12), 2101-115.
  • Allen R.D., 1995. Dissection of oxidative stress tolerance using transgenic plants. Plant Physiol., 107, 1049-1054.
  • Alsher R.G., Donahue J.L., and Cramer C.L., 1997. Reactive oxygen species and antioxidants: Relationship in green cells. Physiol Plant, 100, 224-233.
  • Asada K., 1992. Ascorbate peroxidase – hydrogen peroxidescavenging enzyme in plants. Physiol. Plant., 85, 235-24.
  • Asada K., 2006. Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol., 141, 391-396.
  • Bafana A., Dutt S., Kumar A., Kumar S., and Ahuja P.S., 2011. The basic and applied aspects of superoxide dismutase. J. Mol. Catal. B: Enzym., 68, 129-138.
  • Balakhnina T.I.,Bennicelli R.P., StępniewskaZ., and Stępniewski W., 2004. Oxygen stress In the Root zone and plant response (some examples). In: Physics, Chemistry and Biogeochemistry in Soil and Plant Studies (Ed. G. Józefaciuk), Institute of Agrophysics PAS Press, Lublin, Poland.
  • Balakhnina T.I., Bennicelli R.P., Stępniewska Z., StępniewskiW., and Fomina I.R., 2010a. Oxidative damage and antioxidant defense system in leaves of Vicia faba major L. cv. Bartom during soil flooding and subsequent drainage. Plant Soil, 327, 293-301.
  • Balakhnina T., Włodarczyk T., Borkowska A., Nosalewicz M., Serdyuk O., Smołygina L., Ivanova E., and Fomina I., 2010b. Effect of 4-hydroxyphenethyl alkohol on growth and adaptive potential of barley plants under optimal and soil flooding conditions. Pol. J. Environ. Stud., 19(3), 565-572 .
  • Balakhnina T.I., Gavrilov A.B., Włodarczyk T.M., Borkowska A., Nosalewicz M., and Fomina I.R., 2009. Dihydroquercetin protects barley seeds against mould and increases seedling adaptive potential under soil flooding. Plant Growth Reg., 57, 127-135.
  • Balakhnina T.I., Kosobryukhov A.A., Ivanov A.A., and Kreslavskii V.D., 2005. The effect of cadmium on CO2 exchange, variable fluorescence of chlorophyll, and the level of antioxidant enzymes in pea leaves. Russ. J. Plant Physiol., 52(1), 15-20.
  • Balakhnina T.I.,MatichenkovV.V.,W³odarczykT.,BorkowskaA., Nosalewicz M., and Fomina I.R., 2012. Effects of silicon on growth processes and adaptive potential of barley plants under optimal soil watering and flooding. Plant Growth. Reg., DOI 10.1007/s10725-012-9658-6.
  • Barber D.A. and Shone M.G.T., 1966. The absorption of silica from aqueous solutions by plants. J. Exp. Bot., 17, 569-578.
  • Beckmann M., Hock M., Bruelheide H., and Erfmeier A., 2012. The role of UV-B radiation in the invasion of Hieracium pilosella – A comparison of German and New Zealand plants. Environ. Exp. Bot., 75, 173-180.
  • Bednarek W., Tkaczyk P., and Dresler S., 2006. Heavy metals content as criterion for assessment of carrot root (in Polish). Acta Agrophysica, 142, 779-790.
  • Bennicelli R.P., Balakhnina T.I., Szajnocha K., and Banach A., 2005. Aerobic conditions and antioxidative system of Azolla caroliniana Willd. in the presence of Hg in water solution. Int. Agrophysics, 19, 27-30.
  • Beyer W., Imlay J., and Fridovich I., 1991. Superoxide dismutase. Prog. Nucl. Asid Res., 40, 221-253.
  • Biel K.Y., Matichenkov V.V., and Fomina I.R., 2008. Protective role of silicon in living systems. In: Functional Foods for Chronic Diseases (Ed. D.M. Martirosyan). D and A Inc., Richardson Press, Dallas, USA.
  • Bowler C., Van Montagu M., and Inze D., 1992. Superoxide dismutase and stress tolerance. Annu. Rev. Plant Physiol. Plant. Mol. Biol., 43, 83-116.
  • Brigelius-Flohe R. and Flohe L., 2003. Is there a role of glutathione peroxidases in signaling and differentiation? Biofactors, 17, 93-102.
  • Chen H., Qualls R.G., and Blank R.R., 2005. Effect of soil flooding on photosynthesis, carbohydrate partitioning and nutrient uptake in the invasive exotic Lepidium latifolium. Aquat. Bot., 82, 250-268.
  • Devkota A. and Jha P.K., 2011. Influence of water stress on growth and yield of Centella asiatica. Int. Agrophys., 25, 211-214.
  • Egneus H., Heber U., and Kirk M., 1975. Reduction of oxygen by the electron transport chain of chloroplasts during assimilation of carbon dioxide. Biochim. Biophys. Acta, 408, 252-268.
  • Epron D. and Dreyer E., 1993. Long-term effects of drought on photosynthesis of adult oak trees (Quercus petraea and Q. robur) in a natural stand. New Phytol., 125, 381-389.
  • Epstein E., 1999. Silicon – Annual Review of Plant Physiology. Plant Mol. Biol., 50, 641-664.
  • Fang Ch.-X., Wang Q.-S., Yu Y., Huang L.-K.,WuX.-Ch., and Lin W.-X., 2011. Silicon and its uptaking gene Lsi1 in regulation of rice UV-B tolerance. Acta Agron. Sin., 37(06), 1005-1011.
  • Farkas I., 2011. Plant drought stress: detection by image analysis. In: Encyclopedia of Agrophysics (Eds J. Gliñski, J. Horabik, J. Lipiec), Springer Press, Dordrecht-Heidelberg-London- New York.
  • Ghamsari L., Keyhani E., and Golkhoo S., 2007. Kinetics properties of guaiacol peroxidase activity in Crocus sativus L. Corm during rooting. Iran. Biomed. J., 1, 137-146.
  • Gliński J., 2011. Agrophysical objects (soils, plants, agricultural products, and food). In: Encyclopedia of Agrophysics (Eds J.Gliñski, J.Horabik, J.Lipiec), Springer Press, Dordrecht- Heidelberg-London-New York.
  • Gliński J., Horabik J., and Lipiec J., 2011. Agrophysical properties and processes. In: Encyclopedia of Agrophysics (Eds J. Gliñski, J. Horabik, J. Lipiec), Springer Press, Dordrecht- Heidelberg-London-New York.
  • Gliński J. and Stępniewski W., 1985. Soil Aeration and its Role for Plants. CRC Press, Boca Raton, Florida.
  • Gliński J., Stępniewski W., Ostrowski J., and Stępniewska Z., 2004. Spatial characteristics of soil redox conditions (Ed. Albert-Ludwigs). Proc. Conf. EUROSOIL, September 4-12, Freiburg, Germany.
  • Gong H.J., Chen K.M., Zhao Z.G., Chen G.C., Zhou W.J., and 2008. Effects of silicon on defense of wheat against oxidative stress under drought at different developmental stages. Biol. Plantarum, 52(3), 592-596.
  • Gong H., Zhu X., Chen K., Wang S., and Zhang Ch., 2005. Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Sci., 169, 313-321.
  • Gunes A., Inal A., Bagci E.G., and Coban S., 2007a. Siliconmediated changes on some physiological and enzymatic parameters symptomatic of oxidative stress in barley grown in sodic-B toxic soil. J. Plant Physiol., 164, 807-811.
  • Gunes A., Inal A., Bagci E.G., Coban S., and Sahin O., 2007b. Silicon increases boron tolerance and reduces oxidative damage of wheat grown in soil with excess boron. Biol. Plantarum, 51(3), 571-574.
  • Halliwell B., 1984. Oxidative damage, lipid peroxidation and antioxidant protection in chloroplasts. Chem. Phys. Lipids, 44, 327-340.
  • Hammond K.E.,EvansD.E., andHodsonM.J., 1995. Aluminium/ silicon interactions in barley (Hordeum vulgareL.) seedlings. Plant Soil, 173, 89-95.
  • Hattori T., Inanaga S., Araki H., An P., Morita S., Luxov´a M., and Lux A., 2005. Application of silicon enhanced drought tolerance in Sorghum bicolor. Physiol. Plant., 123, 459-466.
  • Hattori T., Sonobe K., Inanaga S., An P., Tsuji W., Araki H., Eneji A.E., and Morita S., 2007. Short term stomatal responses to light intensity changes and osmotic stress in sorghum seedlings raised with and without silicon. Environ. Exp. Bot., 60, 177-182.
  • Hejazi Mehrizi M., Shariatmadari H., KhoshgoftarmaneshA.H., and Zarezadeh A., 2011. Effect of salinity and zincon physiological and nutritional responses of rosemary. Int.Agrophys., 25, 349-353.
  • Hossain M.T., Soga K., Wakabayashi K., Kamisaka S., Fujii S., Yamamoto R., and Hoson T., 2007. Modification of chemical properties of cell walls by silicon and its role in regulation of the cell wall extensibility in oat leaves. J. Plant Phys., 164(4), 385-393.
  • Jaleel C.A., Riadh K., Gopi R., Manivannan P., Inès J., AI-Juburi H.J., Zhao C.X., Shao H.B., and Panneerselvam A., 2009. Antioxidant defense responses: physiological plasticity in higher plants under abiotic constraints. Acta Physiol. Plant., 31, 427-436.
  • Jarvis S.C., 1987. The uptake and transport of silicon by perennial ryegrass and wheat. Plant Soil, 97, 429-437.
  • Jones L.H.P. and Handreck K.A., 1967. Silica in soils, plants and animals. Adv. Agron., 19, 107-149.
  • Khelifa S., M’HamdiM., RejebH., Belbahri L., and SouayehN., 2011. Relation between catalase activity, salt stress and urban environments in Citrus aurantium L. J. Hortic. Forest., 3(6), 186-189.
  • Kovda V.A., 1973. The bases of learning about soils. Nauka, 2(8), 377-428.
  • Kubioe J., 2005. The effect of exogenous spermidine on superoxide dismutase activity, H2O2 and superoxide radical level in barley leaves under water deficit conditions. Acta Physiol. Plant., 27(3A), 289-295.
  • Larson R.A., 1988. The antioxidants of higher plants. Phytochem., 27, 969-978.
  • Li B., Wei Song Ch., Li N., and Zhang J., 2007. Heterologous expression of the TsVP gene improves the drought resistance of maize. Plant Biotech. J., 6(2), 146-159.
  • Liang Y., Chen Q., Liu Q., Zhang W., and Ding R., 2003. Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of saltstressed barley (Hordeum vulgare L.). J. Plant Physiol., 160, 1157-1164.
  • Liang Y.C., Si J., and Römheld V., 2005. Silicon uptake and transport is an active process in Cucumis sativus L. New Phytol., 167, 797-804.
  • Lizana C., Hess S., and Calderini D.F., 2009. Crop phenology modifies wheat responses to increased UV-B radiation. Agr. Forest Meteorol., 149, 1964-1974.
  • Lux A., Luxova´ M., Abe J., Morita S., and Inanaga S., 2003. Silicification of bamboo (Phyllostachys heterocycla Mitf.) root and leaf. Plant Soil, 225, 85-91.
  • Lux A., Luxova´ M., Hattori T., Inanaga S., and Sugimoto Y., 2002. Silicification in sorghum (Sorghum bicolor) cultivars with different drought tolerance. Physiol. Plant., 115, 87-92.
  • Ma C.C., Li Q.F., Gao Y.B., and Xin T.R., 2004. Effects of silicon application on drought resistance of cucumber plants. Soil Sci. Plant Nutr., 50, 623-632.
  • Ma J.F.,Miyake Y., and Takahashi E., 2001a. Silicons as a beneficial element for crop plants. In: Silicon in Agriculture (Eds L. Datonoff, G. Korndorfer, G. Synder). Elsevier Sci. Press, New York, USA.
  • Ma J.F., Ryan P.R., and Delhaize E., 2001b. Aluminum tolerance in plants and the complexing role of organic acids. Trends Plant Sci., 6, 273-278.
  • MaJ.F. and Yamaji N., 2006. Silicon uptake and accumulation in lower plants. Trends Plant Sci., 11(8), 392-397.
  • Matichenkov V.V., and Ammosova J.M., 1996. Effect of amorphous silica on soil properties of a sod-podzolic soil. Eurasian Soil Sci., 28(10), 87-99.
  • Matichenkov V.V., Calvert D.V., and Snyder G.H., 2000. Prospective silicon fertilization for citrus in Florida. Soil Crop Sci. Proc., 59, 137-141.
  • Mittler R., 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci., 7, 405-410.
  • Molassiotis A., Sotiropoulos T., Tanou G., Diamantidis G., and Therios I., 2005. Boron induced oxidative damage and antioxidant and nucleolytic responses in shoot tips culture of the apple rootstockEM9(Malus domestica Borkh). Environ. Exp. Bot., 56, 54-62.
  • Parry D.W. and Kelso M., 1975. The distribution of silicon deposits in the root Molina caerulea (L.) Moench and Sorghum bicolor (L.) Moench. Ann. Bot., 39, 995-1001.
  • Parvaiz A. and Satyawati S., 2008. Salt stress and phytobiochemical responses of plants – a review. Plant Soil Environ., 54(3), 89-99.
  • Pociecha E., Kooecielniak J., and Filek W., 2008. Effects of root flooding and stage of development on the growth and photosynthesis of field bean (Vicia faba L. minor). Acta Physiol. Plant., 30, 529-535.
  • Rains D.W., Epstein E., Zasoski R.J., and Aslam M., 2006. Active silicon uptake by wheat. Plant Soil, 280, 223-228.
  • Rana A. and Masood A., 2002. Heavy metal toxicity: effect on plant growth and metal uptake by wheat, and on free living Azotobacter. Water Air, Soil Pollut., 138, 165-180.
  • Ranganathan S., Suvarchala V., Rajesh Y.B.R.D., Prasad M.S., Padmakumari A.P., and Voleti S.R., 2006. Effects of silicon sources on its deposition, chlorophyll content, and disease and pest resistance in rice. Biol. Plant., 50, 713-716.
  • Richmond K.E. and Sussman’s M., 2003. Got silicon? The non-essential beneficial plant nutrient. Curr. Opin. Plant Biol., 6, 268-272.
  • Rosa S.B., Caverzan A., Teixeira F.K., Lazzarotto F., Silveira J.A.G., Ferreira-Silva S.L., Abreu-Neto J., Margis R., and Margis-Pinheiro M., 2010. Cytosolic APx knockdown indicates an ambiguous redox responses in rice. Phytochem., 71, 548-558.
  • Rybus-Zaj¹c M. and Kubioe J., 2010. Effect of UV-B radiation on antioxidative enzyme activity in cucumber cotyledons. Acta Biol. Cracoviensia, Botanica, 52(2), 97-102.
  • Said-Al Ahl H.A.H., Omer E.A., and Naguib N.Y., 2009. Effect of water stress and nitrogen fertilizer on herb and essential oil of oregano. Int. Agrophys., 23, 269-275.
  • Savant N.K., Snyder G.H., and Datnoff L.E., 1997. Silicon management and sustainable rice production. Advances Agron., 58, 151-199.
  • Schmidt R.E., Zhang X., and Chalmers D.R., 1999. Response of photosynthesis and superoxide dismutase to silica applied to creeping bentgrass grown under two fertility levels. J. Plant Nutr., 22, 1763-1773.
  • Shein E.V. and Pachepsky Y.A., 1995. Influence of root density on the critical soil water potential. Plant Soil, 171(2), 351-357.
  • Shen X., Zhou Y., Duan L., Li Z., Eneji A.E., and Li J., 2010. Silicon effects on photosynthesis and antioxidant parameters of soybean seedlings under drought and ultraviolet-B radiation. J. Plant Physiol., 167, 1248-1252.
  • Shi Q.H.,BaoZ.Y.,ZhuZ.J.,HeY., QianQ.Q., andYuJ.Q., 2005. Silicon mediated alleviation of Mn toxicity in Cucumis sativus in relation to activities of superoxide dismutase and ascorbate peroxidase. Phytochem., 66, 1551-1559.
  • Shigeoka S., Ishikawa T., Tamoi M., Miyagawa Y., Takeda T., Yabuta Y., and Yoshimura K., 2002. Regulation and function of ascorbate peroxidase isoenzymes. J. Exp. Bot., 35(372), 1305-1319.
  • Shim I-S., Momose Y., Yamamoto A., Kim D-W., and Usui K., 2003. Inhibition of catalase activity by oxidative stress and its relationship to salicylic acid accumulation in plants. Plant Growth Reg., 39, 285-292.
  • Sokolova T.A., 1985. The clay minerals in the humid regions of USSR (in Russian). Nauka Press, Novosibirsk, Russia, Soylemezoglu G., Demir K., Inal A., and Gunes A., 2009. Effect of silicon on antioxidant and stomatal response of two grapevine (Vitis vinifera L.) rootstocks grown in boron toxic, saline and boron toxic-saline soil. Sci. Hort., 123, 240-246.
  • Yang X., Liang Z., Wen X., and Lu C., 2008. Genetic engineering of the biosynthesis of glycinebetaine leads to increased tolerance of photosynthesis to salt stress in transgenic tobacco plants. Plant Mol. Biol., 66, 73-86.
  • Yoshida S., 1975. The physiology of silicon in rice. Techn. Bull., 25, 24-27.
  • Wang W., Vinocur B., and Altman A., 2003. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta, 218(1), 1-14.
  • Zancan S., Suglia I., La Rocca N., and Ghisi R., 2008. Effects of UV-B radiation on antioxidant parameters of iron-deficient barley plants. Environ. Exp. Bot., 63, 71-79.
  • Zhu J.K., 2001. Plant salt tolerance. Trends Plant Sci., 6, 66-71.
  • ZhuX., Song F., andXu H., 2010. Influence of arbuscular mycorrhiza on lipid peroxidation and antioxidant enzyme activity of maize plants under temperature stress. Mycorrhiza, 20, 325-332.

Uwagi

PL
Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-be3aeca3-7719-4ff2-b972-94b05cf1437e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.