PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 64 | 3 |

Tytuł artykułu

Activity of natural polyether ionophores: monensin and salinomycin against clinical Staphylococcus epidermidis strains

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Staphylococcus epidermidis, a coagulase-negative Staphylococcus, is the most important pathogen responsible for chronic nosocomial infections. These bacteria produce extracellular slime and form biofilms on various biotic and abiotic surfaces. Bacterial biofilms are very resistant to standard antimicrobial therapy and difficult to eradicate, so it is important to search for new more effective anti-biofilm agents, for example in the group of natural substances. The aim of the study was to examine the activity of two ionophores-salinomycin and monensin against clinical S. epidermidis strains, using MIC/MBC method and biofilm formation inhibition assay. Bacterial strains were tested also for slime production using Congo Red Agar. Both tested ionophore antibiotics showed the highest activity against planktonic bacteria of clinical as well as standard S. epidermidis strains and effectively inhibited the formation of bacterial biofilm.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

64

Numer

3

Opis fizyczny

p.273-278,fig.,ref.

Twórcy

autor
  • Department of Pharmaceutical Microbiology, Medical University of Warsaw, Warsaw, Poland
autor
  • Department of Pharmaceutical Microbiology, Medical University of Warsaw, Warsaw, Poland
autor
  • Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland
autor
  • Department of Pharmaceutical Microbiology, Medical University of Warsaw, Warsaw, Poland
  • Department of Antibiotics and Microbiology, National Medicines Institute, Warsaw, Poland

Bibliografia

  • Adovelande J. and J. Schrével. 1996. Carboxylic ionophores in malaria chemotherapy: the effects of monensin and nigericin on Plasmodium falciparum in vitro and Plasmodium vinckei petteri in vivo. Life Sci. 59: PL309-PL315
  • Antoszczak M., E. Maj, J. Stefańska, J. Wietrzyk, J. Janczak and B. Brzezinski. 2014: Synthesis, antiproliferative and antibacterial activity of new amides of salinomycin. Bioorg. Med. Chem. Lett. 24: 1724–1729.
  • Arciola CR., D. Campoccia, S. Gamberini, M.E. Donnati, V. Pirini, L. Visai, P. Spaziale and L. Montanaro. 2005. Antibiotic resistance in expolysaccharide-forming Staphylococcus epidermidis clinical isolated from orthopedic implant infections. Biomaterial. 26: 6530–6535.
  • Bridier A., R. Brandet, V. Thomas and F. Dubois-Brissonnet. 2011. Resistance of bacterial biofilms to desinfectants: a review. Biofouling. 27: 1017–1032.
  • Butaye P., L.A. Devriese and F. Haesebrouck. 2003. Antimicrobial growth promoters used in animal feed: effects of less well known antibiotics on Gram-positive bacteria. Clin. Microbiol. Rev. 16: 175–188
  • Callaway T.R., T.S Edrington., J.L. Rychlik, K.J. Genovese, T.L.Poole, Y.S.Jung, K.M.Bischoff, R.C.Anderson and D.J.Nisbet. 2003. Ionophores: their use as ruminant growth promotants and impact on food safety. Curr. Issues Intest. Microbiol. 4: 43–51.
  • Charlebois A., M. Jacques and M. Archmbault. 2014. Biofilm formation of Clostridium perfringens and its exposure to low-dose antimicrobials. Front. Microbiol. 5: 183.
  • Christensen G.D, W.A. Simpson, A.L. Bisno, E.H. and Beachey. 1982. Adherence of slime-producing strains of Staphylococcus epidermidis to smooth surfaces. Infection and Immunity 37: 318–326.
  • Clinical and Laboratory Standards Institute. 2012a. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved Standard M07-A9. CLSI CLSI, Wayne, Pennsylvania, USA.
  • Clinical and Laboratory Standards Institute. 2012b. Performance standards for antimicrobial disk susceptibility tests. Approved Standard M07-A11. CLSI, Pennsylvania, USA.
  • Clinical and Laboratory Standards Institute. 1999. Methods for determining bactericidal activity of antimicrobial agents. Approved Guideline M26-A. CLSI, Wayne, Pennsylvania, USA.
  • Costerton J.W., P.S. Stewart and E.P. Greenberg. 1999. Bacterial biofilms: a common cause of persistent infections. Science 284: 1318–1322.
  • Gomes F., P. Teixeira and R. Oliveira. 2014. Mini-review: Staphylococcus epidermidis as the most frequent cause of nosocomial infections: old and new fighting strategies. Biofouling. 30:131–141.
  • Götz F. 2002. Staphylococcus and biofilms. Mol. Microbiol. 43: 1367–137.
  • Høiby N., T. Bjarnsholt, M. Givskov, S. Molin and O. Ciofu. 2010. Antibiotic resistance of bacterial biofilms. Int. J. Antimicrob. Agents. 35: 322–332.
  • Huczyński A. 2012: Salinomycyn – a new cancer drug candidate. Chem. Biol. Drug. Des. 79: 235–238.
  • Huczyński A., J. Janczak, J. Stefańska, M. Antoszczak and B. Brzezinski. 2012. Synthesis and antimicrobial activity of amide derivatives of polyether antibiotic-salinomycin. Bioorg. Med. Chem. Lett. 22: 4697–4702.
  • Johnson D.C. and P.G. Spea. 1982. Monensin inhibits the processing of herpes simplex virus glycoproteins, their transport to the cell surface, and the egress of virions from infected cells. J.Virol. 43: 1102–1112
  • Kevin D.A. II, D.A.F. Meujo and M.T. Hamann. 2009. Polyether ionophores: broad spectrum and promising biologically active molecules for the control of drug-resistant bacteria and parasites. Expert Opin. Drug. Discov. 4: 109–146
  • Łowicki D., A. Huczyński, J. Stefańska and B. Brzezinski. 2009. Synthesis, structural and antimicrobial studies of new N-allylamide of monensin A and its complexes with monovalent cations. Tetrahedron 65: 7730–7740.
  • Łowicki D., A. Huczyński, J. Stefańska and B. Brzezinski. 2010. Structural characterization and antibacterial activity against clinical isolates of Staphylococcus of N-phenylamide of monensin A and its 1:1 complexes with monovalent cations. Eur. J. Med. Chem. 45:4050–4057.
  • Łowicki D. and A. Huczyński. 2013. Structure and antimicrobial properties of monensin A and its derivatives: summary of the achievements. Bio. Med. Res. Int. 2013: Article ID 742149.
  • Mack D., H. Rohde, L.G. Harris, A.P. Davies, M.A. Horstkotte and J.K. Knobloch. 2006. Biofilm formation in medical device-related infection. Int. J. Artif. Organs. 29:343–359.
  • Montanaro L., P. Speziale, D. Campoccia, S. Ravaioli, I. Cangini, G. Pietrocola, S. Giannini and C.R. Arciola. 2011. Scenery of Staphylococcus implant infections in orthopedics. Future Microbiol. 6: 1329–1349.
  • Nagender P., G. Malla Reddy, R. Naresh Kuma, Y. Poornachandra, C. Ganesh Kumar and B. Narsaiah. 2014. Synthesis, cytotoxicity, antimicrobial and anti-biofilm activities of novel pyrazolo[3,4-b] pyridine and pyrimidine functionalized 1,2,3-triazole derivatives. Bioorg. Med. Chem. Lett. 24:2905–2908.
  • Oz H.S., W.T. Hughes and J.E. Rehg. 1997. Efficacy of lasalocid against murine Pneumocystis carinii pneumonitis. Antimicrob. Agents Chemother. 41: 191–192
  • Pascual A. 2002. Pathogenesis of catheter-related infection; lessons for new design. Clin. Microbiol. Infect. 8:256–264.
  • Podbielska A., H. Gałkowska, E. Stelmach, G. Młynarczyk and W.L. Olszewski. 2010. Slime production by Staphylococcus aureus and Staphylococcus epidermidis strains isolates from patients with diabetic foot ulcers. Arch. Immunol. Ther. Exp. 58: 321–324.
  • Rutkowski J. and B. Brzezinski. 2013. Structures and properties of naturally occurring polyether antibiotics. BioMed. Res. Int. 2013: Article ID 162513.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-bcbdaa9e-fe73-4a96-951d-20c26c71b657
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.