PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | 19 | 1 |

Tytuł artykułu

The impact of the meteorological factors on the calculation of crops water consumption and vertical moisture exchange in soil

Warianty tytułu

PL
Wpływ czynników naturalnych na obliczanie zużycia wody przez rośliny uprawne oraz pionową wymianę wilgoci w glebie

Języki publikacji

EN

Abstrakty

EN
Aim of the study The aim of the work was to develop methods for calculating water consumption of plants and vertical moisture exchange, focusing on the impact of meteorological factors upon the agricultural conditions of reclaimed soils. Material and methods The methods of Shebeko, Rogotskiy and Pylenok, which are commonly used in Russia, were assumed as the basis of the study. The research was carried out on an ecological landfill created in the Oka river basin near Riazań (central part of the Russian Plain). The empirical data of agro-climatologic, radiation, lysimetric and soil moisture measurements in the period from the beginning of May to the end of September during the years 1981–2018 were taken into account in the conducted analyses. Processing of research materials was carried out using such methods as analysis of variance, calculation of statistical characteristics of the sample, linear correlation. The analysis of the influence of meteorological factors on the water balance of soil with three agricultural crops: lupine, potatoes, and oats was conducted in the 16 weeks following the time of sowing (planting) the crops in the field. Results and conclusions Such investigated temporal dynamics of water consumption has pointed to strong correlations of this consumption with radiation balance, saturation deficit, and bioclimatic coefficients of the agricultural crops. The new coefficients were proposed, providing more precision than the studies conducted previously in Russia, applied in the methods of calculating water consumption and vertical moisture exchange. There exists a need to calculate the optimum irrigation regime of drained soils, and to plan the regime for complex land reclamation, including technologically contaminated lands.
PL
Cel pracy Celem pracy było doskonalenie metod obliczania konsumpcji wody przez rośliny oraz pionowej wymiany wilgoci w glebie, brano pod uwagę wpływ czynników meteorologicznych w agrokulturowych warunkach zrekultywowanych gleb. Materiał i metody Jako podstawę badań przyjęto powszechnie stosowane w Rosji metody Shebeko, Rogotskiya i Pylenoka. Badania przeprowadzono na ekologicznym składowisku odpadów w zlewni rzeki Oka, koło Riazania (centralna część Równiny Rosyjskiej). Do analiz wykorzystano dane empiryczne z pomiarów agroklimatycznych, radiacyjnych, lizymetrycznych i wilgotności gleby wykonanych od początku maja do końca września w latach 1961–2018. W przeprowadzonych analizach wykorzystano takie metody jak analiza wariancji, obliczanie statystycznych charakterystyk próbki badawczej i korelację liniową. Przedstawiono analizę wpływu czynników meteorologicznych na bilans wodny gleby z trzema uprawami rolniczymi: łubin, ziemniaki, owies dla kolejnych 16 tygodni od czasu siewu (sadzenia) tych upraw. Wyniki i wnioski Tak badana dynamika czasowa konsumpcji wody wskazała na silne związki korelacyjne tej konsumpcji z bilansem radiacyjnym, niedosytem wilgotności powietrza oraz z bioklimatycznymi współczynnikami badanych upraw. Zaproponowano nowe, dokładniejsze niż dotychczas wyprowadzone w Rosji współczynniki dla wykorzystanych metod obliczania konsumpcji wody i pionowej wymiany wilgoci. Potrzebne są do uzyskania optymalnego reżimu irygacyjnego dla drenowanych gleb i w planowaniu tego reżimu dla kompleksowych systemów rekultywacji, w tym terenów skażonych technologicznie.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

19

Numer

1

Opis fizyczny

p.3-12,ref.

Twórcy

  • Meshcherskiy Branch, Federal State Budgetary Scientific Institution VNIIGiM named after A.N. Kostyakova, Meshcherskaya st.1a, 390-021 Ryazan, Russia
autor
  • Institute of Environmental Protection and Development, Wroclaw University of Environmental and Life Sciences, Plac Grunwaldzki 24, 50-363 Wroclaw, Poland
autor
  • FSBEI HE, Ryazan State Medical University, Visokovoltnaya st. 9, 390-026 Ryazan, Russia
autor
  • Ryazan State Agrotechnological University, Kostycheva st.1, 390-044 Ryazan, Russia,

Bibliografia

  • Allen, R.G., Pereira, L.S., Raes, D., Smith, M. (1998). Crop Evapotranspiration: Guidelines for Computing Crop Requirements, Irrig. Drain. Pap. 56, Food and Agric. Organ. of the U.N., Rome.
  • Bac, S., Kuchar, L. (2001). Estimation of potential evaporation by modified Turc formula. Ann. UMCS, Sectio B, Geographia, geologia, Mineralogia et Petrographia, 55/56, 41–49 (in Polish).
  • Bishov, I, Kalmikov, G.S. (1977). Methodological guidelines for the statistical processing of experimental data in land reclamation and soil science, Moscow. (in Russian).
  • Bryś, K. (1998). The role of radiation factor in evapotranspiration. Zesz. Nauk AR Wrocław, Inż. Środowiska X, 349, 17–51 (in Polish).
  • Bryś, K. (2002). The new wroclavian formula on potential evaporation. Rocz. AR Poznań, Melioracje, 338, 22, 21–30 (in Polish).
  • Bryś, K. (2013) Dynamics of net radiation balance of grass surface and bare soil. Monografie CLXII. Wrocław: Wyd. UP we Wrocławiu. (in Polish).
  • Bryś, K., Bryś, T. (2019). Multi-annual variability of global solar radiation in the agricultural area of Lower Silesia (SW Poland) and its relationship with the North Atlantic Oscillation. Meteorology Hydrology and Water Management. Research and Operational 7, 13–25. doi.org/10.26491/mhwm/103461
  • Bryś, K. Bryś, T., Sayegh, M. A., Ojrzyńska, H. (2018). Subsurface shallow depth soil layers thermal potential for ground heat pumps in Poland. Energy and Buildings, 165, 64–75. doi.org/10.1016/j.enbuild.2018.01.015
  • Bryś, K. Bryś, T, Sayegh, M. A., Ojrzyńska, H. (2020). Characteristics of heat fluxes in subsurface shallow depth soil layer as a renewable thermal source for ground coupled heat pumps. Renewable Energy, 146, 1846–1866. doi.org/10.1016/j.renene.2019.07.101
  • Budagovskii, M.I. (1964) The soil moisture evaporation. Science, Moscow (in Russian).
  • Budagovskii, A. I. (1981) The scientific research of assessments of irrigation needs and irrigation systems calculation. Modern problems of hydrology of irrigated lands. Moscow, 16–32. (in Russian).
  • Dospehov, B.A. (1985) The field experience methodology, Agropromizdat. Moscow, 351. (in Russian).
  • Geiger, R., Aron, R. H., Todhunter, P. (2003). The climate near the ground. Oxford: Rowman & Littlefield Publish.
  • Hanks, R. J. (1992). Applied Soil Physics: Soil Water and Temperature Applications. New York: Springer-Verlag.
  • Ivanov, N.N. (1957) The world map of evaporativity. Leningrad: Gidrometeoizdat. (in Russian).
  • Kapuściński, J. (2000). Heat balance structure of active surface on the background of climatic conditions of the west-middle Poland. Rocz. AR Poznań, Rozprawy Nauk. 303, Poznań (in Polish)
  • Kobysheva, N. V. (2001). The climate of Russia. St. Petersburg: Gidrometeoizdat (in Rusian)
  • Marshall, T. J., Holmes, J. W., Rose, C. W. (1996) Soil physics. Cambridge University Press.
  • Monteith, J.L. (1964). Evaporation and environment. The state and movement of water in living organisms, Symp. Soc. Exp. Biol., 19, 205.
  • Monteith, J.L., Unsworth, M. H. (1988). Principles of Environmental Physics. London: Edward Arnold.
  • Oke, T.R. (1995) Boundary layer climates. London: Methuen.
  • Ostapchik, V.P., Fillipenko, L.A. (1978). Methodological guidelines for conducting experimental researches and the calculation of bioclimatic coefficients of crop water consumption. Kiev (in Russian).
  • Paszyński, J., Miara, K., Skoczek, J. (1999). Exchange of energy between atmosphere and ground surface as a base of topoclimatic mapping. Warszawa: IGiPZ PAN, Dok. Geogr., 14, (in Polish).
  • Pavlov, A.A. (2018). Lizimetr. Patent RF, 2641193, (in Russian).
  • Peel, M.C., Finlayson, B.L., McMahon, T.A. (2007). Updated world map of the Koppen-Geiger climate classifications. Hydrol. Earth Syst. Sci., 11, 1633–1644, Doi:10.5194/hess-11-1633-2007
  • Pielke, R. A. (1984). Mezoscale meteorological modeling, Academic Press.
  • Pylenok, P.I. (1985) Changes in the soil water regime and water protection measures in the zone of the drainage systems impact. Diss. Cand. tech. Sc., Moscow, (publish. or manuscript in all grown scientific-research Institute of hydraulic engineering and land reclamation them. A. N. Kostyakova.)(in Russian)
  • Rogotsky, V.V. (1981). The usage of lysimetric information for assessing the moisture exchange in the aeration zone. Water balance researches on reclaimed lands. Leningrad: Gidrometeoizdat, 128–139 (in Russian).
  • Roth, K. (2012). Soil Physics, Institute of Environmental Physics, Heidelberg University. www.iup.uni-heidelberg.de/institut/forschung/groups/ts/soil_physics/.../sp-v2.2.pdf
  • Shebeko, V.F., Mozhzha, I.I., Kiseleva, A.I. (1965). The instructions and programs for computers in designing the water regime of drained lands on the basis of regime water balance calculations. Minsk: BelNIIMiVH (in Russian).
  • Shebeko, V.F., Zakrezhevsky P.I., Bragilevskaya E. A. (1980). The hydrological calculations in the design of drainage and drainage-humidifying systems. Leningrad: Gidrometeoizdat. (in Russian).
  • Sidorov, I. V. (1985). The water balance and the regime of moistening of the drained floodplain lands, Moscow, (publish. or manuscript in all grown scientific-research Institute of hydraulic engineering and land reclamation them. A. N. Kostyakova.). (in Russian).
  • Stankov, I.Z. (1964) The root system of field crops. Moscow. (in Russian).
  • Stelmah, E.A., Sidorov, I.V (1982). The estimated method of forming the operating mode of irrigation of agricultural crops on the floodplain lands. Ryazan (in Russian).
  • Stull, R. B. (1988). An introduction to boundary layer meteorology, Kluwer Acad. Publish..
  • Walczak, R., Usowicz, B. (1994). Variability of moisture, temperature and thermal properties in bare soil and in crop field, Int. Agrophys. 8, 161–168.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-bb822ef4-7ab9-412f-bdcd-e6db9a385f15
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.