PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 21 | 1 |

Tytuł artykułu

Effect of the reclamation of heavy metal-contaminated soil on growth of energy willow

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In a two-year microplot experiment conducted on sandy and loess soils contaminated with Cd and Pb, the response of energy willow to these metals has been analyzed as well as the results of soil reclamation using two rates of peat. Differences have been observed between the soils, both in terms of the response of plants to pollutants and the effect of the applied peat. Contamination of sandy soil with Cd and Pb have led to complete necrosis of plants, whereas the yield of willow plants obtained on loess was comparable to the control. The application of peat to sandy soil limited the transport of metals by willow plants to aerial parts, restoring the intensity of photosynthesis to a comparable level, as in the control treatment.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

21

Numer

1

Opis fizyczny

p.187-192, ref.

Twórcy

  • Department of Weed Science and Tillage Systems, Orzechowa 61, 50-540 Wroclaw, Poland
autor

Bibliografia

  • 1. KABATA-PENDIAS A., MOTOWICKA-TERELAK T., PIOTROWSKA M., TERELAK ., WITEK T. Assessment of contamination level of soil and plants with heavy metals and sulphur, IUNG Pulawy Publisher, P, (53), 1, 1993 [In Polish].
  • 2. OLESZEK W., TERELAK H., MALISZEWSKA-KORDYBACH B., KUKUŁA S. Soil, food and agroproduct contamination monitoring in Poland, Pol. J. Environ. Stud., 12, (3), 261, 2003.
  • 3. MULLIGAN C.N., YONG R.N., GIBBS B. F. Remediation technologies for metal-contaminated soils and groundwater: an evaluation, Eng. Geol., 60, 193, 2001.
  • 4. PADMAVATHIAMMA P.K., LI L.Y. Phytoremediation technology: hyper-accumulation metals in plants, Water Air Soil Pollut., 184, 105, 2007.
  • 5. WITTERS N., VAN SLYCKEN S., RUTTENS A., ADRIAENSEN K., MEERS E., MEIRESONNE L., TACK FMG., THEWYS T., LAES E., VANGRONSVELD J. Short-rotation coppice of willow for phytoremediation of a metal-contaminated agricultural area: a sustainability assesmant, Bioenerg. Res., 2, 144, 2009.
  • 6. LAI H.Y., LEE D.Y., CHUNG R.S., CHEN Z.S. Large area phytoremediation experiment to study the uptake of metals by twelve plant species growing in the contaminated site of central Taiwan. In : Biogeochemistry of trace elements: environmental protection, remediation and human health, Tsinghua University Press, Beijing, China, 188, 2007.
  • 7. YANG X., BAGLIAR VC., MARTENS DC., CLARK R B. Plant tolerance to nickel toxicity I. Influx, transport and accumulation of nickel in four species, J. Plant. Nutr., 19, 73, 1996.
  • 8. BURZYŃSKI M., KŁOBUS G. Changes of photosynthetic parameters in cucumber leaves under Cu, Cd, and Pb stress, Photosynthetica, 42, (4), 505, 2004.
  • 9. KELLER C., HAMMER D., KAYSER A., RICHNER W., BRODBECK M., SENNHAUSER M. Root development and heavy metal phytoextraction efficiency: comparison of different plant species in the field, Plant and Soil, 249, 67, 2003.
  • 10. SELL J., KAYSER A., SCHULIN R., BRUNNER I. Contribution of ectomycorrhizal fungi to cadmium uptake of poplars and willows from a heavily polluted soil, Plant Soil, 277, 245, 2005.
  • 11. MEERS E., VANDECASTEELE B., RUTTENS A., VANGRONSVELD J., TACK F.M.G. Potential of five willow species (Salix Spp.) for phytoextraction of heavy metals, Environ. Exp. Bot., 60, 57, 2007.
  • 12. JENSEN J.K., HOLM P.E., NEJRUP J., LARSEN M.B., BORGGAARD O.K. The potential of willow for remediation of heavy metal polluted calcareous urban soil, Environ. Poll., 157, 931, 2009.
  • 13. MLECZEK M., RUTKOWSKI P., RISSMAN I., KACZMAREK Z., GOLINSKI P., SZENTNER K., STRAŻYŃSKA K., STACHOWIAK A. Biomass productivity and phytoremediation potential of Salix alba and Salix viminalis, Biom. Bioener., 34, 1410, 2010.
  • 14. BISSONNETTE L., ST-ARNAUD M., LABRECQUE M. Phytoextraction of heavy metals by two Salicaceae clones in symbiosis with arbuscular mycorrhizal fungi during the second year of a field trial, Plant Soil, 332, 55, 2010.
  • 15. FILIPIAK K., WILKOS S. Statistical calculations. AWAR System Description. Ed. IUNG Pulawy, R, (324), 1, 1995 [In Polish].
  • 16. MLECZEK M., LUKASZEWSKI M., KACZMAREK Z., RISSMANN I., GOLINSKI P. Efficiency of selected heavy metals accumulation by Salix viminalis roots, Environ. Exp. Bot., 65, 48, 2009.
  • 17. CHUGH LK., SAWHNEY S.K. Photosynthetic activities of Pisum sativum seedlings grown in presence of cadmium, Plant physiol. Biochem., 37, (4), 297, 1999.
  • 18. LANDBERG T., GREGER M., Differences in oxidative stress in heavy metal resistant and sensitive clones of salix viminalis, J. Plant Physiol., 159, 69, 2002.
  • 19. MONNI S., UHLIG C., HANSEN E., MAGEL E. Ecophysiological responses of Empetrum nigrum to heavy metal pollution, Environ. Poll., 112, 121, 2001.
  • 20. QUFEI L., FASHUI H. Effects of Pb²⁺ on the structure and function of photosystem II of Spirodela polyrrhiza, Biol. Trace Elem. Res., 129, 251, 2009.
  • 21. PLEKHANOV S.E., CHEMERIS Y.K. Early toxic effects of zinc, cobalt, and cadmium on photosynthetic activity of the green alga Chlorella pyrenoidosa Chick S-39, Biol. Bull., 5, 610, 2003.
  • 22. CI D., JIANG D., WOLLENWEBER B., DAI T., JING Q., CAO W. Cadmium stress in wheat seedlings: growth, cadmium accumulation and photosynthesis, Acta Physiol. Plant., 32, 365, 2010.
  • 23. WATSON C., PULFORD I.D., RIDDELL-BLACK D. Heavy metal toxicity responses of two willow (Salix) varieties grown hydroponically: devwlopment of a tolerance screning test, Environ. Geochem. Health, 21, 359, 1999.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-bb6946b5-02dc-44b5-99a3-ce0993c532ea
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.