PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 11 | 5 |

Tytuł artykułu

The effect of chloride on nutrient contents in fruits of greenhouse tomato (Lycopersicon esculentum Mill.) grown in rockwool

Autorzy

Treść / Zawartość

Warianty tytułu

PL
Wpływ chlorków na zawartość składników pokarmowych w owocach pomidora szklarniowego (Lycopersicon esculentum Mill.) uprawianego w wełnie mineralnej

Języki publikacji

EN

Abstrakty

EN
Chlorine plays important role in physiological and biochemical processes in plants. It effects significantly on biological value of yield. In Experiment I (2004–2005) the levels of 15, 30, 60, and 90 mg Cl·dm⁻³ but in Experiment II (2006) the levels of 30, 60, 90 and 120 mg Cl·dm⁻³ in the nutrient solutions on the nutrient contents and some chemical parameters of fruits of greenhouse tomato cv. ‘Grace’ grown in rockwool were studied. It was found, that increased chloride contents in the nutrient solutions increased the content of chlorine in the fruits. Increasing contents of chloride in the nutrient solution at the range of 90 to 120 mg Cl·dm⁻³ decreased the nitrogen and increased potassium contents in fruits. Contents of chloride in the nutrient solutions above 90 mg Cl·dm⁻³ enhanced the content of α-ascorbic acid and decreased the content of reducing sugars in fruits. There were no effects on the content of nitrate and nitrite contents as well as the acidity and β-carotene in fruits. The tendency of lowering the dry matter of fruits above the level of 90 mg Cl·dm⁻³ in the nutrient solutions was appered. It was not found the effect of increased chloride levels in the nutrient solutions on P, Ca, Mg, S, Na, Fe, Mn, Zn, Cu and B contents in the fruits of tomato.
PL
Chlor odgrywa ważną rolę w procesach fizjologicznych i biochemicznych roślin. Ma istotny wpływ na wartość biologiczną plonu. W doświadczeniu I (2004–2005) badano wpływ chlorków w stężeniach 15, 30, 60 i 90 mg Cl·dm⁻³ natomiast w doświadczeniu II (2006) wpływ stężeń 30, 60 i 90 i 120 mg Cl·dm⁻³ w pożywkach na zawartość składników pokarmowych i niektóre chemiczne parametry jakościowe owoców pomidora szklarniowego odmiany ‘Grace”, uprawianego w wełnie mineralnej. Wykazano, że wzrastające poziomy chlorków w pożywkach zwiększały zawartość chloru w owocach. Przy wyższych zawartościach chlorków w pożywkach, wynoszących 90 i 120 mg Cl·dm⁻³, a tym samym chloru w owocach, następowało obniżenia zwartości azotu i wzrost zawartości potasu w owocach. Powyżej 90 mg Cl·dm⁻³ w pożywkach zwiększała się zawartość kwasu α-askorbinowego i obniżała zawartość cukrów redukujących. Nie stwierdzono wpływu chlorków na zawartość azotanów, azotynów i β-karotenu. Wykazano natomiast tendencję do obniżania się zawartości suchej masy w owocach przy stężeniach równych i wyższych od 90 mg Cl·dm⁻³ pożywki w stosunku do zawartości 15–30 mg Cl·dm⁻³. Nie stwierdzono istotnego wpływu wpływu chlorków na zawartość P, Ca, Mg, S, Na, Fe, Mn, Zn, Cu i B w owocach pomidora.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

11

Numer

5

Opis fizyczny

p.43-53,ref.

Twórcy

autor
  • Department of Horticultural Plants Nutrition, Poznan University of Life Sciences, Zgorzelecka 4, 60-198 Poznan, Poland
autor
  • Poznan University of Life Sciences, Poznan, Poland

Bibliografia

  • Adler P. R., Wilcox G., E., 1995. Ammonium increases the net rate of sodium influx and partitioning to the leaf of muskmelon. J. Plant Nutr. 18, 1951–1962.
  • Arnon D. I., Whatley F. R., 1949. Is chloride a coenzyme of photosynthesis? Science 110, 554–556.
  • Bar Y., Apelbaum A., Kafkafi U., Goren R., 1996. Polyamines in chloride stressed citrus plants: Alleviation of stress by nitrate supplementation via irrigation water. J. A. Soc. Hort. Sci. 121(3), 507–513.
  • Benton J., 1999. Tomato plant culture: in the field, greenhouse and home garden. CRC Press LLC, London.
  • Broyer T.C., Cartlton A. B., Johnson C.M., Stout P.R., 1954. Chlorine – A micronutrient element for higher plants. Plant Physiol. 29, 526–532.
  • Caines A.M., Shennan C., 1999. Interactive effects of Ca+2 and NaCl salinity on the growth of two tomato genotypes differing in Ca+2 deficiency. Plant. Pysiol. Biochem. 37(7/8), 569–576. Callan N.W., Westcott M.P., 1996. Drip irrigation for application of potassium to tart cherry. J. Plant Nutr. 19(1), 163–172. Chapagain B.P., Wiesman Z., 2004. Effect of potassium and magnesium chloride in the fertigation solution as partial source of potassium on growth and quality of greenhouse tomato. Sci. Hort. 99, 279–288.
  • Chapagain B., Wiesman Z., Zaccai M., Imas P., Magen H., 2003. Potassium chloride enhances fruit appearance and improves quality fertigated greenhouse tomato as compared to potassium nitrate. J. Plant Nutr. 26(3), 643–658.
  • De Witt C.T., Dijkshorn W., Noggle J., 1963. Ionic balance and growth of plants. Verslagen van Landbouwkd Onderzoekingen, Wageningen, 69, 15.
  • Drzazga, D., 1992. Chemical analysis in processing of fruits and vegetables. WSiP. Warsaw, 26–40.
  • Hiatt A.J., Leggett J.E., 1974. Ionic interaction and antagonisms in plants. In: Carson, E. W. ed. The plant root and its environment. Univ. Press Virginia, 101–134.
  • ISO 6635, 1984. Fruits, vegetables and derived products. Determination of nitrite and nitrate content. Molecular absorption spectrometric method. IUNG, 1972. Methods of chemical analyses for the experimental stations of agriculture. Part II. Plant analyses. Inst. Soil Sci. Plant Cult. (IUNG), Puławy (Poland), 25–83.
  • Jarosz Z., 2006. Effect of different types of potassium fertilization on the chemical composition of leaves and fruits of greenhouse tomatoes grown in various substrates. Acta Sci. Pol., Hortorum Cultus 5(1), 11–18.
  • Kafkafi U., Valoras N., Letey J., 1982. Chloride interaction with nitrate and phosphate nutrition in tomato (Lycopersicon esculentum L.). J. Plant Nutr. 5(12), 1369–1385.
  • Kowalczyk W., Dyśko J., Kaniszewski S., 2008. Effect of nutrient solution pH regulated with hydrochloric acid on the concentration of Cl- ions in the root zone in soilless culture of tomato. J. Elementol. 13(2): 245–254.
  • Kowalska I., 2006. Wpływ siarczanów na stan odżywienia, plonowanie i jakość owoców pomidora (Lycopersicon esculentum Mill.) uprawianego w systemach bezglebowych. (The effect of sulfate on the nutrient status, field and fruit quality of tomato fruits (Lycopersicon esculentum Mill.) grown in soilless culture.) Zesz. Nauk. AR im. Hugona Kołłątaja w Krakowie. 315, 53–57.
  • Lahav E., Steinhard R., Kalmar D., Ferguso M.A.C., Beusichem M.L.V., 1992. Effect of salinity on the nutritional level of avocado: Optimization of plant nutrition. 8th Int. Colloq. Optim. Plant Nut., Lisbon, Portugal, 593–596.
  • Lopez J., Santoz-Perez J., Lozano-Trejo S., Urrestarazu M., 2003. Mineral nutrition and productivity of hydroponically grown tomatoes in relation to nutrient solution recycling. Proc. IS on Greenhouse Salinity. Acta Hort. 609, 219–223.
  • Mengel K., Kirkby E.A., 2001. Principles of plant nutrition. Kluwer Academic Publishers, Dordrecht, Boston, London.
  • Michałojć Z., Nowak L., 2000. Yield and chemical composition of tomato grown in the inert media. VIII Conference on “Efficiency of fertilizers used for horticultural crops”, ed. S. Gawroński, Warsaw: 70–72.
  • Muraka I.P., Jackson T.L., Moore D.P., 1973. Effects of N, K and Cl on N components of Russet Burbank potatoes. Agron. J. 65, 868.
  • Nukaya A.W., Hashimoto H., 2000. Effects of nitrate, chloride and sulfate ratios and concentration in the nutrient solution on yield, growth and mineral uptake characteristics of tomato plants grown in closed rockwool system. Acta Hort. 511, 165–171.
  • Nukaya A.W., Voogt W., Sonneveld C., 1991. Effects of NO3, SO4 and Cl ratios on tomatoes grown in recirculating system. Acta Hort. 294, 297–304.
  • Nurzyński J., Michałojc Z., 1998. Plonowanie pomidora szklarniowego uprawianego na wełnie mineralnej w zależności od nawożenia potasowego (Yielding of greenhouse tomato grown in rockwool in dependence on potassium nutrition.). Zesz. Nauk. AR w Krakowie (Annales Agric. Univ. in Kraków) 333, 235–239.
  • Nurzyński J., Michałojć Z., Borowski E., 2000a. Oddziaływanie różnych podłoży na plon i skład chemiczny pomidora. Cz. I. Uprawa wiosenna. (The effect of different substrates on yield and chemical composition of tomato. Part I. Spring cultivation). VIII Ogólnop. Konf. Nauk. „Efektywność stosowania nawozów w uprawach ogrodniczych – Zmiany ilościowe i jakościowe w warunkach stresu”, Warszawa 20–21.06.2000, 80–82.
  • Nurzyński J., Michałojć Z., Borowski E., 2000b. Oddziaływanie różnych podłoży na plon i skład chemiczny pomidora. Cz. II. Uprawa jesienna. (The effect of different substrates on yield and chemical composition of tomato. Part II. Fall cultivation). VIII Ogólnop. Konf. Nauk. „Efektywność stosowania nawozów w uprawach ogrodniczych – Zmiany ilościowe i jakościowe w warunkach stresu”, Warszawa 20–21.06.2000, 83–84.
  • PN-67/A-86430/. Oznaczanie zawartości cukrów bezpośrednio redukujących metodą Bertranda.
  • PN-90/A-75101/11. Oznaczanie witaminy C metodą Tillmansa.
  • Satti S.M., Al-Yahyai R., A., 1995. Salinity tolerance in tomato: implications of potassium, calcium and phosphorus. Com. Soil Sci. Plant Anal. 26, 17–18.
  • Smith G.S., Clark C.J., Holland P.T., 1987. Chlorine requirement of kiwifruit (Actinidia deliciosa). New. Phytol. 106, 71–80.
  • Toor R.K., Savage G.P., Heeb A., 2006. Influence of different fertilizers on the major antioxidant components in tomato. J. Food Sci. 42, 660–665.
  • Uexküll von H.R., Sanders J.L., 1986. Chloride in the nutrition of palm trees. In “Special Bulletin in Chloride and Crop Production” ed. T. L. Jackson. Potash & Phosphate Institute, Atlanta, GA, Am. Soc. Agron. PPI, Special Bull. 2, 84–99.
  • Voogt W., Sonneveld C., 2004. Interactions between nitrate (NO3) and chloride (Cl) in nutrient solution for substrate grown tomato. ISHS, Proc. Int. Symp. on Growing Media & Hydroponics. Acta Hort. 644, 359–368.
  • Wang D.Q., Guo B.C., Dong X.Y., 1989. Toxicity effects of chloride in crops. Chin. J. Soil Sci. 30, 258–261.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-baafe0e7-8830-459c-ab21-03876e68cad3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.